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Abstract 
 
This paper presents a method of classifying phonemes by combining a dynamical system approach with 
sub-band decomposition of speech signals. The ability of reconstructed phase spaces to effectively model 
sub-bands of phonemes in different phonological classes is studied. The current results are taken from a 
small speaker-independent set. For the final version of this paper, the entire TIMIT database will be used 
for experimentation. 
 
Introduction 
 
Standard automatic speech recognition (ASR) systems use acoustic features that are based on linear 
models, which have proven to be successful in many applications [1]. However, ASR systems often fail 
when presented with conditions that differ even slightly from those with which the system was trained. 
Current systems are far inferior to humans, and there are many factors such as noise and speaker variability 
that severely degrade recognition performance. 

Because of the deficiencies in today’s ASR systems, interest in nonlinear analysis of speech 
signals has emerged [2-4]. It is now believed that human speech production includes some nonlinear 
processes [2]. 

 
Background and Motivation 
 
Today, the most popular acoustic features used for speech recognition are cepstral coefficients, which come 
from a linear model of speech production [1]. This model describes human speech production as an 
excitation source and a linear time-invariant filter representing the vocal tract. Cepstral analysis allows the 
excitation source energy to be separated from the frequency response characteristics of the vocal tract. 
Because of the linearity assumption, current ASR systems may be ignoring important information 
contained in speech signals. 

Reconstructed phase space (RPS) methods offer an alternative, nonlinear approach to phoneme 
modeling and classification. Here, analysis is performed in the time domain rather than the frequency 
domain. A RPS is created by generating d-dimensional vectors with the signal and d-1 time-delayed 
versions of itself. It has been shown [5, 6] that if d is large enough, a RPS is topologically equivalent to the 
original system that created the signal, and therefore has all of the original information. An example of a 
two dimension RPS of the phoneme ‘/ao/’, which has been zero-meaned and radial normalized, is shown in 
Figure 1.  

There has been recent work applying a sub-band approach to analyzing speech signals [7-9]. The 
goal of such work is to improve recognition of noisy speech by combining recognition results from 
individual sub-bands. This approach is motivated in part by experimental work done by Harvey Fletcher at 
Bell Labs in the 1920’s [10]. His results suggest that humans recognize speech in independent frequency 
bands. 

There is substantial evidence that the human cochlea acts as a filter bank, possibly splitting the 
speech waveform into several sub-bands for recognition [11]. The basilar membrane (BM), which conducts 
energy received from the outer and middle ears to the hair cells in the inner ear, is shaped in such a way 
that high frequencies cause large amounts of vibration on one end, and low frequencies cause strong 
vibrations on the opposite end. Because of this, each location on the BM reacts most strongly to a particular 
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frequency, passing the signal components with that frequency on, and attenuating the other frequency 
components. 

 
Figure 1. Reconstructed phase space of ‘/ao/’ phoneme. 

 
Sub-band RPS approach 
 
Previous studies have shown that recognition of speech in sub-bands can make ASR systems more robust 
to narrowband noise [7-9]. If the noise is located in one frequency band, it can be isolated by performing 
recognition on multiple sub-bands independently. Combining the sub-band recognitions can then minimize 
noise effects. In some cases, using this sub-band approach has shown small improvements even on 
uncorrupted speech. 

We take a similar approach using reconstructed phase spaces. Before embedding the speech 
signals into RPS, they are passed through a filter bank. The filters are sets of FIR filters with Kaiser 
windows of length 255, spaced logarithmically according to the approximate Mel-scale. Figure 2 shows the 
RPS of two sub-bands of one phoneme. The sub-bands shown are created with a lowpass filter with a cutoff 
of 1800 Hz, and a highpass filter with the same cutoff. Linear-phase filters are used to avoid phase 
distortion of the signal. 

After filtering, a RPS is created from each filtered signal as a sequence of d-dimensional vectors, 
with the nth vector defined by 
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where τ is the time lag. Gaussian mixture models (GMM) of the phase space points are then built 

for each class using the expectation maximization algorithm. The GMM for a class describes the 
distribution of the RPS points over all examples of that class. We use 38 mixtures, which maximizes the 
descriptive power of the GMM with reasonable computational requirements. Each test phoneme is 
classified with a Bayes’ classifier that finds the likelihood of each class for that test example. The 
likelihood is computed as 
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where x is the test data vector, andC  is the number of classes. The class with the greatest 

likelihood is selected by the classifier. 
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Figure 2. RPS of ‘/iy/’ phoneme low pass filtered (left), and high pass filtered (right) at 1800 Hz. 

 
Experiments 
 
The experiments are performed over a small speaker independent data set (20 speakers) from the Timit 
database. The phoneme set is split into four phonological categories: vowels, fricatives, nasals, and stops. 
Table 1 shows the number of examples in each training and testing set. Results for the final paper will 
include experiments run over all of Timit. In addition, the same experiments will be run using Mel-
frequency cepstral coefficients for comparison. 

 
 Vowels Fricatives Nasals Stops 
Training Set 1,336 572 368 581 
Testing Set 874 354 259 371 

Table 1. Number of examples in training and testing sets for all four categories. 

As a baseline, fullband (unfiltered waveform) signals are classified using the RPS/GMM approach 
with τ = 6 (time lag) and d = 5 (dimension) [12]. Then the signals from each data set are filtered into four 
independent sub-bands, and classification is performed on each sub-band individually. The FIR filters are 
implemented with a Kaiser window with β = 8 and window length M = 255. 
 
 
Results 
 
The results for the RPS experiments are shown in Table 2. For two of the phonological classes, there is at 
least one sub-band that had better accuracy than the fullband. The other two phonological classes have at 
least one sub-band with nearly the same accuracy as the fullband. Also, the relative performance of the sub-
bands is not uniform across the four classes. Vowels and stops are better recognized in the low to mid 
frequency bands, whereas fricatives are recognized more accurately in the higher bands.  

 
Class Fullband < 630 Hz 630–1790 Hz 1790–3955 Hz > 3955 Hz 
Vowels 29.38% 22.32% 28.47% 20.27% 15.49% 
Fricatives 49.72% 37.99% 28.49% 44.69% 48.04% 
Nasals 38.29% 36.49% 45.05% 33.33% 46.40% 
Stops 37.97% 42.03% 34.94% 33.42% 32.91% 

Table 2. Classification accuracies of phonemes in four phonological categories in various sub-bands. 
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Discussion and Conclusions 
 
It was shown that individual RPS sub-bands of phonemes can be used for classification, and that different 
phoneme classes are classified more successfully in different frequency ranges. Clearly, recognition 
accuracy could be improved if the recognizer can decide which band(s) to regard as more reliable on an 
individual phoneme basis.  

Developing a system that uses sub-band decomposition and RPS could yield significant 
improvements over the fullband approach. In future work, combination of sub-band classifications will 
need to be investigated thoroughly. Specifically, there are several questions that need to be addressed: 

 
1. How many sub-bands should be used? 
2. What are the appropriate center frequencies and bandwidths? 
3. How should the individual classifications be combined? 

 
Further experimentation with larger data sets will help us understand the nature of RPS methods in 

sub-bands of speech. The experiments discussed will be run on the entire TIMIT database. Also, Mel-
frequency cepstral coefficients will be used as features to provide comparisons to the RPS techniques. 
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