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ABSTRACT 

Although isolated phoneme classification 
using features from time-domain phase space 
reconstruction has been investigated recently, 
the best representation of feature vectors for 
the discriminability over phoneme classes is 
still an open question. This paper applies 
Principal Component Analysis (PCA) to 
feature vectors from the reconstructed phase 
space. By using PCA projection, the basis of 
the feature space is orthogonalized. A Bayes 
classifier uses the transformed feature vectors 
to classify phoneme exemplars. The results 
show that the classification accuracy with 
PCA method surpasses the accuracy using 
only original features in most cases. PCA 
projection was implemented in three ways 
over the reconstructed phase space on both 
speaker-dependent and speaker-independent 
data. Models are trained and tested using data 
drawn from the TIMIT database. 

 

1. INTRODUCTION 
State of the art speech recognition systems 
typically use cepstral coefficient features, obtained 
via a frame-based spectral analysis of the speech 
signal. Such frequency domain approaches do not 
necessarily preserve the nonlinear information 
present in speech. Reconstructed phase space 
(Abarbanel, 1996; Kantz and Schrieber, 2000) 
could capture the nonlinear information not 
preserved by traditional speech analysis 
techniques, which could result in the improved 
speech recognition. 
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The classical techniques used for phoneme 
classification task are Hidden Markov Models 
(HMM) (Lee and Hon, 1989; Young, 1992), often 
based on Gaussian Mixture Model (GMM) 
observation probabilities. The most common 
features are Mel Frequency Cepstral Coefficients 
(MFCCs). As an alternative to the traditional 
techniques, a nonlinear dynamical systems method 
called the phase space reconstruction can be 
applied to studying speech. The reconstructed 
phase space is simply a plot of the time-lagged 
vectors of signal, which is used to represent the 
nonlinear structure. Geometric structures occur in 
this processing space that are called trajectories or 
attractors. Reconstructed phase spaces are 
topologically equivalent to the original system, if 
the embedding dimension is large enough (Sauer et 
al., 1991). The full dynamics of the system can be 
recovered using phase space reconstruction. The 
previous results (Ye et al., 2002) showed that a 
Bayes classifier, using features extracted from 
phoneme reconstructed phase spaces, can be 
effective in classifying phonemes.  

In order to truly represent the underlying 
dynamic systems that produce the speech signals, 
usually a high dimensional phase space 
reconstruction is required. Considering the 
computational cost associated with the phase space 
method and training data requirement, a lower 
dimensional phase space reconstruction is usually 
desired in practice. Principal Component Analysis 
(PCA) is a transformation that can be used to 
reduce the feature dimension. The original feature 
space is transformed to another feature space on a 
different set of orthogonal base. By doing PCA 
transformation over the phase space, the 
eigenspaces that retain the most significant amount 
of information are kept. Previous work on 
transformation over frequency domain features 
(Kwon et al., 2002) and phase space features 



(Broomhead and King, 1986) can also be found in 
literature.  

 

This paper shows that PCA projection helped 
improve the classification accuracy of isolated 
phoneme classification in general using features 
from the reconstructed phase space. The work uses 
nonparametric distribution model of phoneme 
reconstructed phase spaces as input to a Bayes 
classifier. The Bayes classifier is trained and tested 
on both speaker-dependent and speaker-
independent corpus from the TIMIT database. 

 

2. METHOD 
Figure 1 – Reconstructed phase space of the vowel 

phoneme /aa/ illustrating trajectory 
2.1. Phase Space Reconstruction 

Phase space reconstruction techniques are founded 
on underlying principles of dynamical system 
theory (Sauer et al., 1991; Takens, 1980) and have 
been applied to a variety of time series analysis 
and nonlinear signal processing applications 
(Abarbanel, 1996; Kantz and Schrieber, 2000). 
Given a time series  
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The time lag used in the reconstructed phase space 
is empirical but guided by some key measures such 
as mutual information and autocorrelation 
(Abarbanel, 1996; Kantz and Schrieber, 2000). 
Based on these measures, a time lag of six is 
selected for all the experiments. The embedding 
dimensions before and after PCA projection are 15 
and 3 respectively.    where n is a time index, and N is the number of 

observations, the vectors in a reconstructed phase 
space is formed, according to Takens’ delay 
method (Takens, 1980), 
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where τ is the time delay and d is the embedding 
dimension. This reconstructed phase space is in 
essence no more than a multi-dimensional plot of 
the signal against delayed versions of itself. Figure 
1 provides an illustrative phoneme reconstructed 
phase space with trajectory information. Figure 2 
provides an illustrative phoneme reconstructed 
phase space with density information. In practice, 
the attractor is zero-meaned in the phase space and 
the amplitude variation is normalized from 
phoneme to phoneme using the standard deviation 
of the radius. 

Figure 2 – Reconstructed phase space of the vowel 
phoneme /aa/ illustrating density 

 

2.2. Principal Component Analysis  
In order to perform PCA over the phase space 
features, a trajectory matrix is compiled from the 
vectors that are created by the time delay 
embedding method. 
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2.3. Nonparametric Distribution Model of 
Reconstructed Phase Space 

 
A scatter matrix is formed, 
 
  (4) TS = X X

A statistical characterization, related to the natural 
measure or natural distribution of the attractor 
(Abarbanel, 1996; Kantz and Schrieber, 2000), of 
the reconstructed phase space is estimated by 
dividing the reconstructed phase space into 100 
histogram bins as is illustrated in Figure 2. This is 
done by dividing each dimension into ten partitions 
such that each partition contains approximately 
10% of all training data points. The intercepts of 
the bins are determined using all the training data.  

and an eigendecomposition  is performed such that 
 
  (5) TS = ΦΛΦ

A typical phoneme reconstructed phase space is 
shown in Figure 1 with the corresponding 
intercepts, demonstrating the structure of the 
embedded signal. Figure 2 gives a portrait of the 
reconstructed phase space based on the natural 
distribution. 

 
where the eigenvalues of Λ  are reordered in non-
increasing order along the diagonal. Select the 
largest eigenvalues, and let Φ  be a matrix 
containing corresponding columns of . Then 

′
Φ 2.4. The Bayes Classifier 

 
′Y = XΦ  (6)  

 
is the new PCA projected trajectory matrix. 

Three types of projection were implemented 
and applied to each set of the experiments, which 
we denote PCA projection, individual projection 
and class-based projection. The difference between 
each implementation mainly depends on the 
various ways to compute and apply 
transformations over the data set.  

The estimates of the natural distribution are used as 
input for a Bayes classifier. This classifier simply 
computes the conditional probabilities of the 
different classes given the values of attributes and 
then selects the class with the highest conditional 
probability.  

If an instance is described with n attributes ai 
(i=1…n), then the class that instance is classified 
to a class c from set of possible classes C 
according to a Maximum Likelihood (ML) 
classifier is: 

The PCA projection learns one scatter matrix 
from all the training data and applies the PCA 
transformation to the trajectory matrix from each 
phoneme. The individual projection learns and 
applies the transformation to the trajectory matrix 
from each phoneme in example-by-example basis. 
The class-based projection involves two steps in 
implementation. In the training phase, it learns a 
scatter matrix and applies transformation over each 
phoneme class. Assuming there are C phoneme 
classes, then in test phase, it applies C different 
transformations on the trajectory matrix from each 
phoneme exemplar and these projected trajectory 
matrices are used to compute probabilities under 
the corresponding class models for the Bayes 
classifier. 
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The conditional probabilities in the above formula 
are obtained from the estimates of the natural 
distribution using training data. This Bayes 
classifier minimizes the probability of 
classification error under the assumption that the 
sequence of points is independent. 
 

3. EXPERIMENTS AND RESULTS 
The TIMIT corpus was used to train and evaluate 
the phoneme classification task. The three types of 
projection were implemented as described before:  

 
 



• PCA projection 
• Individual projection 
• Class-based projection 
The embedding dimensions before and after PCA 
projection are 15 and 3 respectively for all the 
experiments. 

The speaker-dependent experiment used data 
from one male speaker with 417 phoneme 
exemplars over standard 48 phonemes (Lee and 
Hon, 1989). Classification results with three types 
of projection were obtained from the speaker-
dependent experiments, which can give a 
comparison between different implementations as 
mentioned above.  

The speaker-independent test used training data 
from six male speakers and testing data from three 
different male speakers with experiments run on 
three types of phonemes respectively. A total of 7 
fricatives, 7 vowels, and 5 nasals are selected for 
these experiments. Also, classification results with 
three types of projection were obtained from the 
speaker-independent experiments, which can give 
an idea of how the projection over the phase space 
affects the classification accuracy on different 
types of phonemes.  

Table 1 shows the results of speaker-dependent 
experiments on a total of 48 phonemes with and 
without projection. Table 2 shows the results of 
speaker-independent experiments on a total of 7 
fricative phonemes with and without projection. 
Table 3 shows the results of speaker-independent 
experiments on a total of 7 vowel phonemes with 
and without projection. Table 4 shows the results 
of speaker-independent experiments on a total of 5 
nasal phonemes with and without projection.  

 
 
 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-
based Proj. 

24.33% 28.47% 25.30% 11.19% 

Table 1 – Phoneme classification results of 
speaker-dependent experiments on a total of 48 

phonemes 

 
 
 
 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-
based 
Proj. 

39.07% 42.38% 33.77% 29.14% 

Table 2 – Phoneme classification results of 
fricatives 

 
 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-
based 
Proj. 

40.54% 43.24% 29.68% 8.78% 

Table 3 – Phoneme classification results of vowels 

 
 

Without 
Proj. 

PCA 
Proj. 

Individual 
Proj. 

Class-
based 
Proj. 

55.21% 48.96% 47.92% 48.96% 

Table 4 – Phoneme classification results of nasals 

 
Table 1 can give a comparison between different 
projection implementations on a total of 48 
phonemes. In this case, the PCA projection method 
works best and the class-based projection method 
works worst. The PCA projection method also 
works best for the fricative and vowel phoneme 
classification tasks while the class-based projection 
method gives the lowest classification accuracies 
for these two tasks. It can be observed that some 
phonemes tend to be classified as one particular 
phoneme for both fricative and vowel experiments 
using class-based projection method. The 
confusion of these phonemes in the reconstructed 
phase space using distribution model can be 
observed by investigating the confusion matrices 
for each case.  
 

4. CONCLUSIONS 
A novel approach for isolated phoneme 
classification task using the features from the 
reconstructed phase space is presented in this 
paper. In order to find the feature transformations 
over the reconstructed phase space that have the 
better discriminability in terms of classification 



accuracy, the principal component analysis over 
the reconstructed phase space was investigated. 
The PCA has the potential benefits to reduce the 
feature dimensionality and preserves the most 
significant amount of information corresponding to 
the largest eigenvalues. Three projection 
implementations were tested. The experiment 
results showed that the PCA projection method 
yielded best classification accuracy and the class-
based projection method yielded worst 
classification accuracy in overall. Future work 
would include investigating the feature 
transformations such as multiple discriminant 
analysis and nonlinear component analysis that can 
extract features possibly more useful for 
classification purposes. 
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