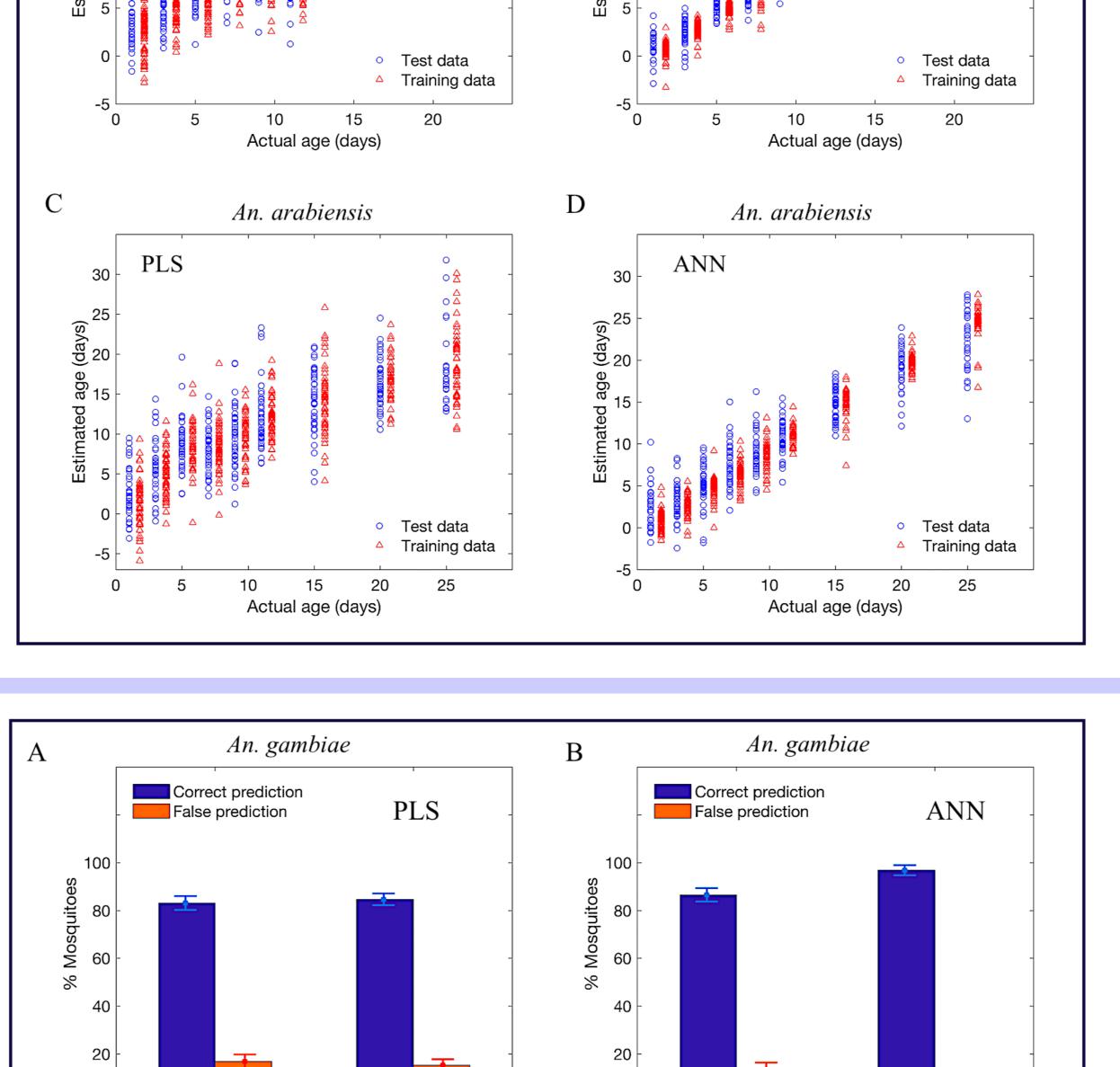
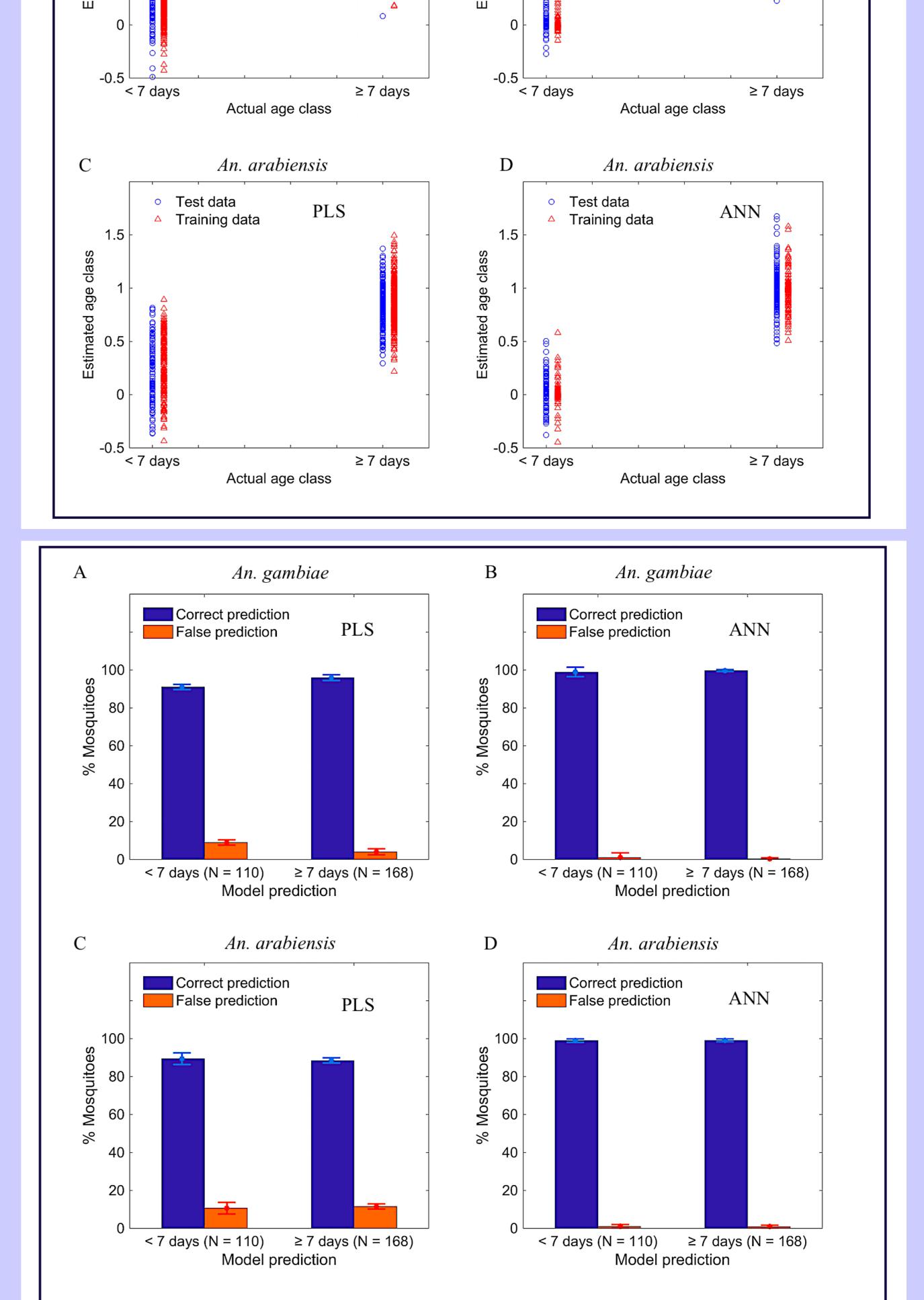


Age Grading Malaria Transmitting Mosquitoes Using Feed Forward Artificial Neural Networks

*Masabho P. Milali^{1,2}, Maggy T. Sikulu-Lord³, Benjamin Durette¹ Samson S. Kiware^{1,2}, Floyd Dowell⁴, George F. Corliss¹ and Richard J. Povinelli¹ ¹Marquette University USA, ²Ifakara Health Institute Tanzania, ³QIMR Berghofer Medical Research Service, Center for Grain and Animal Health Research

*masabho.milali@marquette.edu/ pmasabho@ihi.or.tz




Study objectives:

- We explored whether using an artificial neural network (ANN) analysis instead of PLS regression improves the current accuracy of NIRS models for age-grading malaria transmitting mosquitoes.
- We also explored if directly training a binary classifier instead of training a regression model and interpreting it as a binary classifier improves the accuracy.
- We used two-tail t-test to test the hypothesis that there is significant difference in accuracies between ANN and PLS trained model, and one-tail t-test to test the hypothesis that ANN trained model scores higher accuracies than PLS trained model.

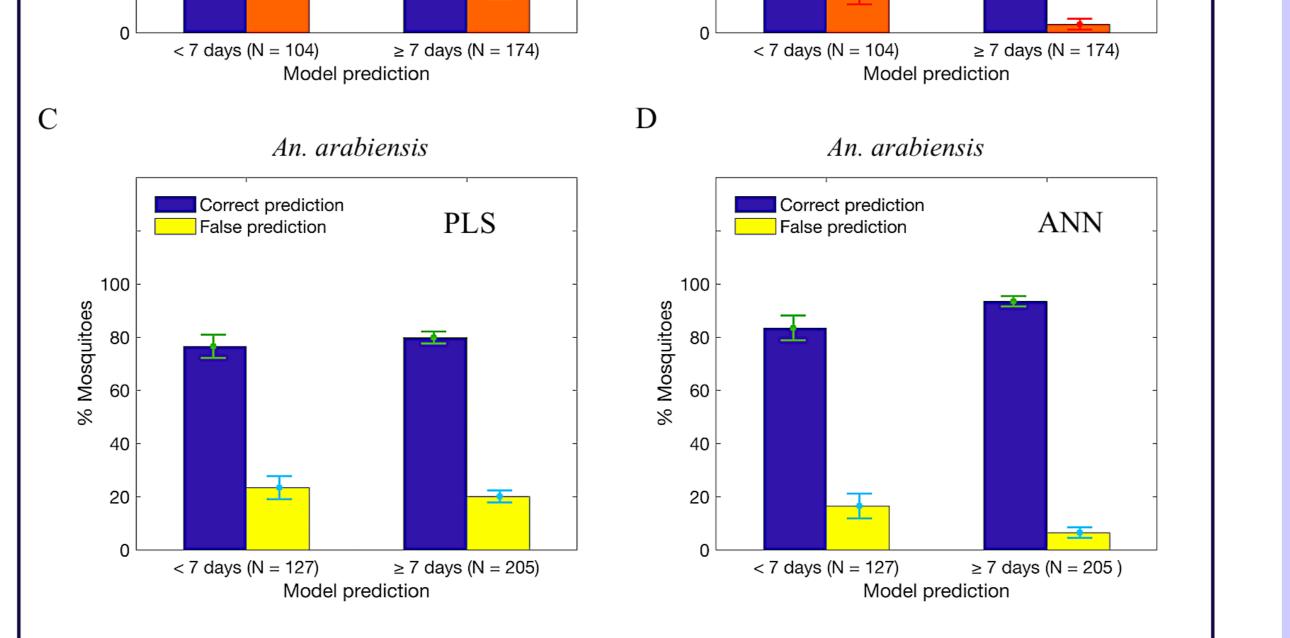
Materials:

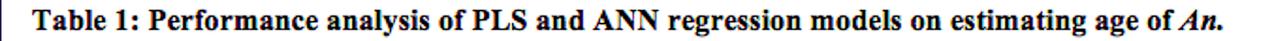
- A total of 786 and 870 NIR spectra collected from laboratory reared An. gambiae and semi-field raised An. arabiensis, respectively, were used and pre-processed according to previously published protocols.

• LabSpec 5000 NIR spectrometer with an integrated light source (ASD Inc., Longmont, CO), was used to collect spectra.

Model training:

• Trained both PLS regresser and binary classifier on ten-PLS components using ten-fold cross validation.


• For the ANN model, we trained a feed-forward ANN with one hidden layer, ten neurons using Levenberg-Marquardt (damped least-squares) as an optimization method. We used linear (purelin) and logistic regression functions as transfer functions when training ANN regresser and classifier, respectively.


Financial support:

We thank Grand Challenge Canada, The Marquette University GasDay and Graduate school for funding the study.

Acknowledgment:

We thank Fredros O. Okumu, Sheila Ogoma and Marta F. Maia for participating in grant writing and managing of the project produced the data used in this study.

gambiae and An. arabiensis. Results from ten Monte Carlo cross validation.

Species	Model	Metric	Model a	chitecture	P-value	P-value		-	
Speeres	interpretation				(two tail)	(one tail)		Species	M
			PLS	ANN					
	Actual age	RMSE	3.7 ± 0.2	1.6 ± 0.2	3.9 x 10 ⁻⁹	1.6 x 10 ⁻¹¹			Ac
An.	estimation	MAE	2.9 ± 0.2	1.2 ± 0.1	5.5 x 10 ⁻¹⁰	7.5 x 10 ⁻¹²		An. gambiae	Se
gambiae		Accuracy (%)	83.9 ± 2.3	93.7 ± 1.0	3.6 x 10 ⁻⁷	2.3 x 10 ⁻⁰⁷		In gumblac	
	Age class	Sensitivity (%)	89.0 ± 2.1	92.5 ± 1.6	0.047	0.4696			Sp
	estimation	Specificity (%)	75.8 ± 5.2	95.6 ± 1.8	3.7 x 10 ⁻¹¹	1.1 x 10 ⁻⁰⁶			Ac
	Actual age	RMSE	4.5 ± 0.1	2.8 ± 0.2	1.7 x 10 ⁻⁹	5.9 x 10 ⁻⁰⁸		An. arabiensis	Se
An.	estimation	MAE	3.5 ± 0.1	2.1 ± 0.2	1.4 x 10 ⁻⁹	1.4 x 10 ⁻⁰⁸			Sp
arabiensis		Accuracy (%)	80.3 ± 2.1	90.2 ± 1.7	1.4 x 10 ⁻⁷	2.4 x 10 ⁻⁰⁸			
	Age class	Sensitivity (%)	90.5 ± 1.9	91.7 ± 3.3	0.58	0.60			
	estimation	Specificity (%)	60.3 ± 4.2	88.4 ± 3.9	1.7 x 10 ⁻⁷	1.2 x 10 ⁻⁰⁶		Conclusion	
Grand Ch	Project supporte allenges Cana éfis Canada	d by:	GAS	DAY	TM I	MARQUETTE JNIVERSITY) M	Conclusion Verrecomme etwork and	

Table 2: Comparison of the accuracy of ANN and PLS classification models on ten replicates

Species	Metric	Model at	chitecture	P-value	P-value
		PLS	ANN	(two-tail)	(one-tail)
	Accuracy (%)	93.6 ± 1.2	99.4 ± 1.0	2.4 x 10 ⁻¹⁹	1.2 x 10 ⁻¹⁹
An. gambiae	Sensitivity (%)	94.4 ± 1.6	99.3 ± 1.4	1.6 x 10 ⁻⁰⁴	2.0 x 10 ⁻⁰⁵
	Specificity (%)	92.4 ± 1.9	99.5 ± 0.7	2.2 x 10 ⁻⁰⁶	6.0 x 10 ⁻⁰⁵
	Accuracy (%)	88.7 ± 1.1	99.0 ± 0.6	1.5 x 10 ⁻²¹	7.6 x 10 ⁻²²
An. arabiensis	Sensitivity (%)	95.4 ± 1.4	99.5 ± 0.5	4.5 x 10 ⁻⁰⁵	2.3 x 10 ⁻⁰⁵
	Specificity (%)	75.2 ± 3.4	98.3 ± 1.3	4.0 x 10 ⁻⁰⁹	2.0 x 10 ⁻⁰⁹

References:

• Mayagaya VS, Michel K, Benedict MQ, Killeen GF, Wirtz RA, Ferguson HM, Dowell FE. Non-destructive Determination of Age and Species of *Anopheles gambiae* sl Using Near-infrared Spectroscopy. Am J Trop Med Hyg. 2009;81(4):622-30. • Lin M, Groves W, Freivalds A, Lee E, Harper M. Comparison of Artificial Neural Network (ANN) and Partial Least Squares (PLS) Regression Models for Predicting Respiratory Ventilation: An Exploratory Study. Eur J Appl Physiol. 2012 May;112(5):1603-11

training of age models using artificial neural aining of binary classifier instead of training regression model and interpret it as binary classifier.