

An Autoencoder and Artificial Neural Network-based Method to Estimate Parity Status of Mosquitoes Using NIRS

*Masabho P. Milali^{1,2}, Samson S. Kiware^{1,2}, Naveen Bansal¹, Serdar Bozdag¹, Jacques D. Charlwood³, Floyd E. Dowell⁴, George F. Corliss¹ and Richard J. Povinelli¹ ¹Marquette University USA, ²Ifakara Health Institute Tanzania, ³Liverpool School of Tropical Medicine, UK, ⁴USDA, Agricultural Research Service, Center for Grain and Animal Health Research

*masabho.milali@marquette.edu/ pmasabho@ihi.or.tz

ovary dissections is near-infrared spectroscopy (NIRS), which can estimate age in days and infectious state of laboratory and semi-field reared mosquitoes with accuracies between 80 and 99%. No study has tested the accuracy of NIRS for estimating parity status of wild mosquitoes.

Study objective: To apply an autoencoder and artificial neural network (ANN) based method to estimate parity status of wild mosquitoes using near-infrared spectra.

Materials: We use four different datasets; *Anopheles arabiensis* collected from Minepa, Tanzania (Minepa-ARA, N = 927); *Anopheles gambiae s.s* collected from Muleba, Tanzania (Muleba-GA, N = 140); *Anopheles gambiae s.s* collected from Burkina Faso (Burkina-GA, N = 158); and *An.gambiae s.s* from Muleba and Burkina Faso combined (Muleba-Burkina-GA, N = 298). While LabSpec 5000 NIR spectrometer with an integrated light source (ASD Inc., Malvern, UK), was used to collect spectra in Minepa-ARA and Muleba-GA, LabSpec4i spectrometer (ASD Inc., Malvern, UK) was used to collect spectra in Burkina-GA.

Model training: We train ANN models on datasets with spectra only pre-processed according to previous protocols. We then use autoencoders to reduce the spectra feature dimensions from 1851 to 10 and re-train ANN models. On each dataset, using ten Monte-Carlo cross validations and Levenberg-Marquardt optimization, a one hidden layer, tenneuron feed-forward ANN model with logistic regression as a transfer function was trained and tested in Matlab

Table 1: Performance of an ANN model trained on 75% of mosquito spectra with 1851 features(before autoencoder) and tested on the remaining 25% spectra (out of the sample testing).Minepa-ARA (Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21)Burkina-GA (Nulliparous = 80, Parous = 78)

	Minepa-ARA (N = 927)	Muleba-GA (N = 140)	Burkina-GA (N = 158)	Muleba-Burkina-GA (N = 298)
ccuracy (%)	81.9 ± 2.8	68.7 ± 4.8	80.3 ± 2.0	75.7 ± 2.5
ensitivity (%)	79.7 ± 3.2	37.8 ± 6.6	76.5 ± 2.1	70.2 ± 3.1
pecificity (%)	86.0 ± 1.6	80.1 ± 2.7	88.3 ± 2.3	77.6 ± 2.9
recision (%)	74.3 ± 3.4	31.3 ± 5.2	77.8 ± 1.8	68.8 ± 3.2
UC (%)	77.2	55.9	83.6	76.4

 Table 2: Performance of an ANN model trained on 75% of the encoded mosquito spectra

(10 features) and tested on the remaining 25% of the encoded mosquito spectra. Minepa-ARA

(Nulliparous = 656, Parous = 271), Muleba-GA (Nulliparous = 119, Parous = 21), Burkina-GA

(Nulliparous = 80, Parous = 78).

Minepa-ARA Burkina-GA Muleba-Burkina-GA Muleba-GA (N = 927)(N = 158)(N = 140)(N = 298)97.1 ± 2.2 89.8 ± 1.7 93.3 ± 1.2 92.7 ± 1.8 Accuracy (%) Sensitivity (%) 94.9 ± 1.6 70.1 ± 2.3 91.7 ± 1.9 88.2 ± 2.9 Specificity (%) 98.6 ± 1.3 94.7 ± 2.1 96.9 ± 1.2 96.4 ± 1.6 **Precision (%)** 93.7 ± 2.4 62.5 ± 3.2 93.1 ± 2.5 91.3 ± 1.4 AUC 91.5 93.1 94.9 96.7 (%)

Acknowledgment: We extend our gratitude to Fredros O. Okumu, Sheila Ogoma and Marta F. Maia for supporting grant writing and managing of the project that produced the Minepa-ARA dataset; Maggy Sikulu-Lord for helping to scan the mosquitoes in the Muleba-GA, and PI of the original project that enabled collection of mosquitoes in the Minepa-ARA dataset; Benjamin Krajacich for allowing us to use Burkina-GA dataset; Gustav Mkandawile who made sure we obtained mosquitoes in Minepa-ARA and Muleba-GA datasets; and the USDA, Agricultural Research Service, Center for Grain and Animal Health Research, USA for loaning us the near-infrared spectrometer used to scan the mosquitoes.

Conclusion

These results show that a combination of an autoencoder and ANNs on NIR spectra yields models that can be used as an alternative tool to estimate parity status of wild mosquitoes, especially since NIRS is a high-throughput, reagentfree, and simple-to-use technique compared to ovary dissections.

Table 3: Independent testing of ANN models trained on Muleba-GA and Burkina-GA encoded

datasets

	ANN model trained on Encoded-Muleba-GA, tested on Encoded-Burkina-GA	ANN model trained on Encoded-Burkina-GA, tested on Encoded-Muleba-GA	
Accuracy (%)	68.6	88.3	
Sensitivity (%)	26.5	86.1	
Specificity (%)	94.4	92.2	

Financial support: We thank Marquette University GasDay and the Ifakara Health Institute for funding the study.

References: 9. Mayagaya VS, et al. Non-destructive Determination of Age and Species of Anopheles gambiae sl Using Near-infrared Spectroscopy. Am J Trop Med Hyg. 2009;81(4):622-30