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Abstract— Data fusion algorithms make it possible to aggre-
gate information from multiple data sources in order to increase
the robustness and accuracy of robotic vision systems. While
Bayesian fusion methods are common in general applications
involving multiple sensors, the computer vision field has largely
relegated this approach. In particular, most object following
algorithms tend to employ a fixed set of features computed
by specialized algorithms, and therefore lack flexibility. In
this work, we propose a general hierarchical Bayesian data
fusion framework that allows any number of vision-based
tracking algorithms to cooperate in the task of estimating the
target position. The framework is adaptive in the sense that
it responds to variations in the reliability of each individual
tracker as estimated by its local statistics as well as by the
overall consensus among the trackers. The proposed approach
was validated in simulated experiments as well as in two robotic
platforms and the experimental results confirm that it can
significantly improve the performance of individual trackers.

[. INTRODUCTION

Although recent advances in visual tracking have enabled
the emergence of new robotic platforms capable of following
objects relatively well, the lack of robustness in a wide range
of real-world scenarios is still a significant limitation of exist-
ing tracking algorithms. This is in part due to problems that
make it difficult to associate images of a target in consecutive
video frames under challenging conditions. These problems
include: fast motion of the object and/or camera, change of
pose or orientation, illumination variation, occlusion, scale
change, clutter, and the presence of similar objects in the
scene. These common disturbances make tracking with any
single approach unreliable in many short term scenarios and
nearly impossible in most long term applications. While a
specific algorithm might perform well for certain scenarios, it
might not work for others. Based on this paradigm, this paper
proposes a general tracking approach that fuses the results
generated by several algorithms into a unique output. Fusion
is done at the bounding box level, where measurements
provided by each of the individual tracking algorithms are
processed as sensor measurements.

In the literature, sensor fusion is also known as multi-
sensor data fusion, data fusion, or combination of multi-
sensor information. All of these methods aim for the same
goal of creating a synergy of information from several
sources [1]. The overall uncertainty of a system that uses only
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one sensor to observe a physical phenomenon is generally
determined by the uncertainty of that particular sensor. With-
out relying on additional sensors, opportunities to reduce this
uncertainty are limited. Furthermore, the failure of the sensor
leads to the failure of the entire system. Different types
of sensors may produce a spectrum of information, which
not only may provide varying accuracy levels but also the
ability to operate under different, sometimes complementary,
conditions [2].

There are a number of benefits to data fusion. First,
with redundant information, the uncertainty can be reduced
to increase the overall accuracy of the system. Second,
if a sensor is deemed to be faulty, another sensor might
compensate for that fault. Furthermore, while one algorithm
could be more robust, say, to scale changes, another could
be more robust to outlying measurements; a cooperative
approach incorporates the best aspects of each method.

In our work, we use the output of vision-based object
trackers as our sensors. Due to the substitutable nature of
our fusion ensemble, however, many additional data sources
such infrared trackers can be incorporated as long as they
generate information about the position of the target.

II. RELATED WORK

The first adaptive data fusion methods have been proposed
in the 1960s [3], but it was not until the early 1990s
that the concept started to be fully explored [4], laying
the foundation for adaptive Bayesian approaches using the
Kalman filter (KF) and its variations [1], [5], [6], [7] such
as the more recent Unscented Kalman Filter (UKF) that
uses multiple fading factors-based gain correction [8]. With
the recent growth in computational performance, more ro-
bust approaches based on the Particle filter (PF) began to
emerge [9]. However, both KFs and PFs are known to be
susceptible to outliers, and recent studies have tried to solve
this problem by introducing extra mechanisms to improve
overall robustness [10], [11], [12]. More complex and time
consuming algorithms have gone further by considering not
only outliers, but also the type of sensor fault in order to
resolve this shortcoming [13].

An adaptive fusion approach with a hierarchical architec-
ture was recently proposed that not only adapts but also
encodes information from the performance of the sensors
[14]. Although that approach is widely used for model
regression and classification, training could leave unexplored
regions, causing the resulting output to suffer from outlying
data. In addition, depending on the selection of experts, the



gating network and the inference model, the overall system
may no be applicable in real-time applications [15].

While adaptive data fusion has been well studied and
established for multi-sensor measurements in general [16],
researchers in the computer vision community tend to rely
on the computation of multiple pre-define fixed image
features to incorporate different image characteristics into
tracking algorithms. Methods such as PROST [17], VTD
[18], CMT [19], Struck [20], or the well known TLD [21]
and its variants [22], [23] fit this framework. However, the
aforementioned algorithms provide limited mechanisms to
incorporate multiple and complementary feature extraction
methods, thereby restricting their practical applicability.

Some of the latest visual tracking fusion approaches sug-
gest fusion at the bounding box level [24], where information
such as pixel coordinates are readily available. However,
to achieve such fusion, offline training and weight finding
must be carried out. This is achieved using ground truth
(GT) information as well as performance metrics of the
dataset used to train the algorithms. More general fusion
approaches have been recently proposed, most of which rely
on Sequential Monte Carlo Bayesian methods such as PFs
[25], [26], [27]. When compared to KFs, however, PFs are
computationally demanding as they tend to require a large
number of particles to provide adequate robustness. They are
hence too computationally expensive for real-time control
applications, and are not popular particularly in applications
that involve moderately high dimensional state spaces.

This work aims to create a general Bayesian approach
for real-time applications in robotic platforms. The pro-
posed method processes the bounding boxes of the track-
ers/detectors as sensor measurements. This framework is
similar in spirit to a bank of KFs and shares some of the
characteristics of the aforecited mixture of experts methods.
Furthermore, this scheme addresses some common problems
such as data imperfection, outliers and spurious data, mea-
surement delays, static vs. dynamic phenomena, and others
discussed in [28]. Our method was tested in simulated signals
and two different robotics platforms: An UAV system and a
pan-tilt system. Both are capable of following a target.

While similar approaches have used vision-based trackers
to control a small UAV in [29], [30] and [23], previous works
did not consider the fusion of several methods at a bounding
box level to improve reliability over longer time spans. In
addition, unlike previous works that explored the topic of
hierarchical data fusion [24], [31], [?], [27], our framework
incorporates a Bayesian confidence estimation and majority
voting scheme to track targets in real time and use this
information to control a UAV.

III. SYSTEM DESCRIPTION

To avoid confusion, all the visual trackers used in this
work that produce a bounding box such as DSSTtld [23],
CMT [19], or Struck [20] will be called detectors from this
point forward. These algorithms are processed as sensors
that generate measurements. The method proposed in this
work, which we call Hierarchical Adaptive Bayesian Data

Fusion (HAB-DF), is the main tracker that processes such
measurements.

The approach proposed in this paper is a variation of the
framework commonly known as mixture of experts [15],
which are organized in levels or hierarchies that converge in
a gating network. This work substitutes that gating network
with a Bayesian approach that adapts its parameters online.
Therefore, no training is necessary. In addition, this method
is organized in a two-level hierarchy: the experts and the
fusion center. Each expert module, K;, i = 1,...,n, works
asynchronously from the other modules. Usually, a bank of
estimators is applied when the sensors differ in model, as
each suffers from different failure types. In this particular
case, the experts are KFs, inspired in part by [32] and [14].
Figure 1 shows a representation of this approach.

In the hierarchical model, each expert is equipped with
an outlier detection mechanism that calculates a reliability
score. The fusion center merges the outputs of each expert
through a weighted majority voting scheme.

Fusion Center

Fig. 1: Hierarchical Adaptive Bayesian Data Fusion approach. The first level
of the hierarchy consists of experts that provide a local estimate to the fusion
center. The second level is the fusion center.

A. Bayesian State Space Model

Our model is based on a linear Kalman filter [33] in which
the state vector is given by X = [u v & w & v i W], where
u, v are the pixel coordinates of the center of the target, &
and w are its height and width, respectively. i v & W are
the velocities in each dimension. In this work, we adopt a
random acceleration model. The object tracking system is
then represented as follows:

X(t) =Ax(r — 1)+ Bu(r) +w(t) (1)
y(1) = Cx () +v(7) 2)

where Eq. (1) represents the system dynamics, including the
state transition matrix A, the influence of the control action
B and the process noise w. Eq. (2) is the measurement
model, which includes the observation matrix C and the
measurement noise v. The process noise and measurement
noise are assumed to be white and Gaussian, with variances
Ry, and Ry, respectively. That is, w ~ .4 (0,R,,,) and
v~ A (0,R,).

B. Hierarchical Adaptive Bayesian Data Fusion

We employ two main strategies to reduce the data fusion
uncertainty. The first strategy is concerned with the reliability



of the measurements generated by individual detectors, and
it provides a local estimate of the uncertainty based on the
Mahalanobis distance [34]. The second strategy is a global
approach based on weighted majority voting. As previously
mentioned, the overall method is divided into a two-level
hierarchy: experts and the fusion center. While each expert
uses position and speed for accuracy, the fusion center only
fuses direct measurements such as position, but still predicts
speeds for better results in subsequent frames. Furthermore,
this concept is not limited to KFs. Any Bayesian estima-
tor can be used to accomplish fusion. Nevertheless, KFs
are known for being efficient, fast, and ideal for real-time
applications.

C. Local Expert Weighting

Without additional strategies to pre-process the measure-
ments, KFs are generally not robust to outliers. Several
works have been proposed to solve this problem [11], [35],
[36]. The Mahalanobis distance (MD) alleviates this issue by
providing a measure of how much a predicted value differs
from its expected distribution.

Outliers occur due to modeling uncertainties, incorrect
process/measurement noise covariances selection, and other
external disturbances. If the estimation error (the difference
between the real state and the estimated state) of the KF is
beyond a certain threshold, the MD can penalize the expert
as being in failure or abnormal mode. Similarly, one can
use the predicted measurement to determine outliers. This
error is then defined as follows: given a measurement y =
[v1 y2 ... yn]T, the MD from this measurement to a predicted

distribution with mean u = [u; uy ... uy|’ and covariance
matrix C is given by
M(y) = /(v - )7C 1 (y - ) 3)

Since each expert is equipped with its own MD calculation,
an approximate version is used [37]:

N a2 12
M(y)%;((y’ci“’)) @

where C; is the i’ value along the diagonal of the innovation
covariance C. Eq. (4) decreases the computational burden
if a considerable number of experts is needed. Usually, an
estimator can be penalized if the MD is beyond a certain
threshold. However, doing so yields hard transitions. To
allow for smoother transitions, a sigmoid function has been
employed [38]:

1

W = M) E)

)
where & is a value chosen using the y? distribution based on
the number of degrees of freedom (DOF) of the system and
the desired confidence level. Eq. (5) then allows outliers to
be implicitly discarded since wy, represents a local weighting
function that reflects the confidence that should be given to
that particular measurement.

D. Majority Voting

Weighted voting is one of the simplest approaches for
fusing information [3]. There are many ways to determine the
weights in such a voting scheme. The method chosen for this
application combines the output of multiple detectors, which,
in this case, corresponds to the information from multiple
bounding boxes. The first step in this method is to calculate
the pairwise Euclidean distance between bounding boxes

di(yV,y@)) = Hym _y<2>H
i=1,2,3,---,n

(6)

where y!) and y are vectors that represent the coordinates
and the size of the bounding boxes for two different detectors
D; and D;. A measure of agreement, such as the minimum
distance value can be used to reach consensus among all the
detectors

ydn)
i=1,2,3,-,n

mind = min(d,-, ce

)

Figure 2 shows a scenario in which detector D3 would be
penalized because it is farther from the other two detectors.
Note that, although a minimum of three detectors is needed
so that a consensus can be reached, this scheme imposes no
upper limit to the number of detectors that can be used. The
only limitation is computational performance.

D2
D1 D3
- d2
L} TF~~-~.
XY "
®-""d

Fig. 2: Majority voting representation. Distances d; are traced from the
center of each detector. While these distances are shown as the center
distances among detectors (u and v), they also comprise their heights and
widths (k4 and w). In this scenario, D and D, are close to each other, while
Ds is farther away. The consensus will penalize D5 in this case, since d; is
the minimum distance.

To calculate a weight that penalizes detectors for being
farther from the cluster of detectors, instead of using a hard
limiter, a hyperbolic tangent is applied, again allowing a
smooth transition among detectors:

waq = @ + (1 4 tanh(ming — 1)) (3)

where @y is an initial weight consistent with the observed
phenomenon, @ is the desired impact of the penalization
function, which determines the overall effect of a particular
detector in the fusion if it drifts away, and A determines the
distance at which the penalization starts taking place.



E. Adaptive Fusion Center Strategy

The bank of KFs is composed of one filter for each
detector. Each filter/expert in the bank generates a local
estimate of the detector assigned to that particular filter.
Another KF acts as the fusion center, which adapts itself
at each measurement by updating its measurement noise
covariance according to

Ryy(Wa,wm) = Twy + Awy, 9)

where wy and w,, are given by Egs. 8 and 5, respectively,
I'= diag(7177/27 T 7%1)5 A= diag(617 62a Ty 6")’ and dlag()
represents a diagonal matrix whose elements are the function
parameters. ¥; and §; can be set to 1 if there is no a priori
knowledge of the system. Otherwise, ¥; can be set to a
value depending on the knowledge of the uncertainty of
the detector and &; can be set to a value depending on
how much drift the detector suffers. This is different from
using a standard multiple model Kalman filter because it
incorporates the confidence-based majority voting into the
Bayesian framework.

Algorithm 1 HAB-DF
Require: Set of n trackers K; € S, initial bounding box xj,
set V of images
Ensure: Bounding box sy representing the fused output
1: Initialize all trackers K; with xg.
2: Initialize Kalman filter for each algorithm implementa-
tion s;
3: Initialize Kalman filter for fused data model
4: while V has new images do
5 Load new image
6: for Each tracker K; € S do
7
8
9

Generate bounding box x; for each tracker K;
Apply Kalman filter (Eq. 1,2) to x;
Compute Mahalanobis Distance weight wyy
10: end for
11: Apply majority voting to find wy
12: Calculate R,, according to Eq. (9)
13: Apply Kalman filter (Eq. 1,2) using R,, as the
observation covariance to generate
the global estimate x¢
14: end while

In summary, the majority voting weight w,; and the MD
weight w,, are used by the global tracker to update R,,,
which is then used in the global correction stage. The overall
structure of our object tracking mechanism is summarized in
Algorithm 1, and evaluated in more detail in [39].

IV. PLATFORM DESCRIPTION

A pan-tilt system and a small UAV were used to test the
proposed method. The algorithm was implemented in C++
and ran in a Lenovo W530 laptop with an Intel® Core™
17-3630QM CPU @ 2.40GHz x 8 processor and a Quadro
K1000M graphics card.

A. Pan-Tilt System

The platform was composed of two servo motors that
control the 2DOF of the system with an on-board Creative
Senz3D camera'. Two different PID controllers kept the
system as close as possible to the center of the image by
keeping track of the centroid of the estimate generated by
our data fusion approach. The servo motors were driven
by the computer using an Arduino UNO that converted the
position commands into PWM signals for the servo motors.
Position commands were sent using serial communication.
The implemented PID gains for both the pan and tilt motions
were: Kp =35, Ki=3.4 and Kd = 8.

B. UAV Platform

The UAV used in this work was the Parrot AR.Drone 2.0,
controlled over a Wi-Fi link. The 4DOF platform is con-
trolled using the same heuristic proposed in [29]. However
only a PD controller was used, with the following gains:

o Pitch(6): Kpg = 0.020 and Kdy = 0.020.
 Roll(¢): Kpy =0.699 and Kdy = 0.400.
o Yaw(y): Kpy = 0.120 and Kdy = 0.020.
o Throttle: Kpr = 0.430 and Kdr = 0.021.

Furthermore, in addition to attempting to keep the target at
the center of the image using its centroid position (u,v), the
UAV also used the target’s relative scale variations, based on
h and w, to keep a constant distance from the target.

V. EXPERIMENTAL RESULTS

This section describes the experiments that were con-
ducted to evaluate the proposed HAB-DF approach. We first
show results from a simulation-based experiment and then
discuss two real applications using the pan-tilt system and
the UAV platform described in Sections IV-A and IV-B.

A. Simulations

A simulation using the HAB-DF is shown in Figure 3. To
emulate a scenario in which different sensors have distinct
characteristics, each signal in the simulation suffers from
different types of noise and faults. Each expert in the
first level of the hierarchy fed the fusion center with its
own estimate. Having redundancy in sensor data produced
estimations that no single method could accomplish alone.
Moreover, the way that the approach adapts itself along the
run allows it to eliminate noise and faults. This can be seen
in Figure 3b, where higher covariance values indicate that
each expert in the first hierarchy is deemed faulty depending
on its performance.

Compared to other works such as [13], the HAB-DF
takes outliers into consideration by using the Mahalanobis
distance, thereby reducing their impact. Unlike [13], HAB-
DF does not learn the fault types, as learning specific types
can leave unexplored regions outside the scope of the training
scenarios. Additionally, the majority voting penalizes any
faulty sensor.

'Only RGB images were used in this work. Depth data was discarded.
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Fig. 3: Simulation of a second order system. yy;, i = 1,2,3 are the sensor

measurements. The proposed HAB-DF method is able to accurately track
the signal by fusing the output of each KF in the first hierarchy. Each
sensor suffers from different types of faults: Gaussian noise, spikes, drifts
and shocks (a constant offset for an given time).

B. Pan-tilt System

This section describes the experiments carried out using
the pan-tilt platform presented in Section IV-A. The evalua-
tion consisted of testing each of the estimators individually
with their respective detector and then the fusion of all of the
detectors. This experiment consisted of tracking the face of a
human subject using the pan-tilt system. All the experiments
were run using similar light conditions and with the same
face at similar starting distances. Each run continued until
the target was out of the image frame or noticeable tracking
loss occurred. As a results, for each run of the experiment,
the system follows the target for a different number of
frames. Furthermore, to compare each individual detector’s
overall performance, each test was labeled by hand. Since
manual labeling is a time consuming task, we performed five
repetitions of the experiment for each individual detector as
well as for the proposed HAB-DF, which generated a total of
20 data sets. Figure 4 shows snapshots from these selected
sequences.

Performance and reliability were measured with an overlap
score (also known as the Jaccard index), given by

App NAT
Jipx (AblnAT) = m

where Ap, and A7 are the areas in pixels of the bounding
boxes of each approach and of the GT, respectively. Jipx

(10)

measures the area of overlap between the bounding boxes
generated by each approach and the labeled GT. The closer
to 1, the better the performance. In addition to the Jipy, the
four-dimensional Euclidean distance d used in the majority
voting also reflects the dissimilarity among each approach
and the GT.

Figure 5 displays several metrics that illustrate the per-
formance of the approaches. Figure 5a shows the average
performance of the different detectors and the proposed
approach according to Jipx. As shown, Struck showed the
worst performance among all the detectors, having problems
with scale changes caused by the target moving closer and
farther from the camera. CMT, DSSTtld and the proposed
approach performed similarly until the 400" frame. DSSTtld
showed the best performance for a few frames in terms of
accuracy (between the 400" and 600" frame) but was not
able to handle pose changes nor out-of-plane rotations of
the target, which resulted in a sudden drop in confidence
level and consequently losing track of the target. While
CMT was able to handle distortions caused by rotation,
its Jipx degraded with scale changes. As a result, it kept
track of the target longer than the other detectors, albeit
with substantially reduced accuracy. If the intrinsic properties
of the detectors are combined, the Bayesian approach is
not only more robust but also more accurate than only
using a single detector. Also, if one of the detectors is
not performing well, such as Struck in the aforementioned
scenario, it is possible to see that the fusion is not affected,
since that particular detector will be considered unreliable
by our framework. Figure 5c shows a comparison of the
accuracies of the different approaches. This plot considers
a threshold between J;px and d of what is considered a
successful frame. On average, the Bayesian fusion yielded
better results and outperformed each individual estimator.
This is consistent with the results in [39] that show that this
method outperforms the constituent trackers.

An additional experiment was conducted using a recycling
bin as target because of its distinct appearance. Figure 7
exhibits different images from the experiment. Figure 6
shows the different metrics collected during the experiment.
Figure 6a shows the J;py for each approach. Up to the 100"
frame, all approaches have similar performance, with HAB-
DF leading in accuracy most of the time. In this scenario,
Struck showed better performance, since the object was kept
almost at a constant distance. It was not until frame 700 that
Struck lost track. Figure 6b shows the Euclidean distance
d. In this case, DSSTtld showed the worst performance
due to pose variations and out-of-plane rotations of the
object, while CMT had a reasonable performance throughout
the run. Furthermore, the HAB-DF leads in performance
among all approaches, relying mainly on the best detectors
at each frame. Figure 6¢ shows once again that HAB-DF
outperforms all of the other approaches.

Figure 6d displays how the adaptation of the HAB-DF
took place. When the distortion of DSSTtld became too high,
the MD increased accordingly. Between frames 100-300 and
500-800 the detector did not overcome distortions caused



FRAME: 133
(a) HAB-DF

FRAME: 184
(b) Struck

276-
(c) DSSTtld

FRAME:
(d) CMT

Fig. 4: Pan-tilt system experiment (best seen in colors). The frames shown
here are random frames selected from the dataset. Each of them presents
a different tracking approach. The target was moving sideways with some
vertical disturbances, and gradually increasing the distance from the camera.

In (a) HAB-DF is shown in yellow and DDSTtld is shown in blue because
it is lost.

by out-of-plane rotations of the object, lowering DSSTtld’s
confidence, and consequently losing track. CMT showed
several spikes caused by substantial delays in processing key
points. This behavior does not affect the overall approach,
as asynchronous measurements are implicitly accounted for
by the MD and majority voting.

Figures 6e and 6f illustrate the object position (ipos, Vpos)
in the frame with respect to the desired set-point (Sp, = 320
and Sp, = 240 which are the pixel center coordinates of the
image). This graph shows that the experiment was consistent
with the motion of the target. Despite some detectors being
lost along the experiment, the transition among them was
smooth.

C. UAV Platform

Figure 8 shows snapshots of experiments using a small
UAV. These experiments were carried out indoors and con-

sisted of following different targets in a hallway and in a
gym. The results of one of these experiments can be seen in
Figure 9. Figure 9a displays the relative distance to the target
as estimated by the ratio between the area of the target and
the image area. The initial ratio is used as the set point, and
the error is used to control the UAV pitch. Figures 9b and 9c
show the vertical and horizontal target positions within the
frame and the corresponding set points. The offset observed
in Figure 9c is due to the coupled effect of the pitch and
throttle controllers as the target moves (i.e., as the UAV
moves forward, its camera faces down). Although this effect
is unavoidable with a fixed camera, it could be resolved with
a camera that can be controlled independently from the UAV.
Figure 9d shows the amount of penalization suffered by each
tracker throughout the trial. It is interesting to note that in this
scenario Struck shows improved performance in comparison
to the pant-tilt system experiments. This is a result of the
fact that the target scale remains approximately constant as
the UAV follows it.

Redundant information allows the platform to track the
target for longer periods of time. In the sequence shown in
Figure 9, HAB-DF was able to keep track of the target for
7132 frames, until all the detectors lost track of the target
simultaneously. In comparison, DSSTtld first lost track at
frame 220, Struck at frame 275, and CMT at frame 1738.
While these trackers were often able to recover from failure
because the target was eventually brought back to the center
of the image, had the control actions been taken according
to any one of those trackers individually, the platform would
likely not have been able to continue following the target.
The proposed scheme allows the system to ignore lost
detectors and rely on those that provide confident estimates.
Failures are evident in Figure 9d, which shows to what extent
each detector is penalized.

VI. CONCLUSION

In this work, a Hierarchical Adaptive Bayesian Data
Fusion method was presented. While the algorithm is not
limited to specific applications, the main scenario under con-
sideration was vision-based robotic control. The method out-
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FRAME: 130

FRAME: 484 FRAME: 697

Fig. 7: Tracking a recycling bin. Frame 130 shows when DSSTtld loses
track due to out-of-plane rotation of the target, while the other approaches
continue tracking normally. Frame 301 shows the majority voting taking
place. While Struck and CMT are tracking the recycling bin, DSSTtld could
not recover. Frame 484 shows all the approaches working together giving
a good estimate before DSSTtld loses track again. At frame 697, Struck
drifts and DSSTtld loses track due to an out-of-plane rotation in a previous
frame. Despite these problems, HAB-DF is able to keep track of the target
for the entire sequence.

performed single detectors, with better accuracy and keeping
track for longer periods of time. Moreover, no training data
was used while most approaches in this field rely on machine
learning techniques, most of which require large amounts of

Fig. 8: Images from UAV Trials. The frames show all the detectors working
properly in the hallway and gym scenarios while the HAB-DF fuses their
measurements. During the trial, DSSTtld loses track several times, as
illustrated in frame 2520, while CMT and Struck continue to track and
HAB-DF properly combines their outputs. Struck shows significant scale
disparity, while the combined output correctly estimates the size of the
target. Frame 3132 shows a different target in which all three detectors are
working albeit with some positional inaccuracy. The combined estimate is
more accurate.

training data for good performance. Even when substantial
amounts of training data are available, these methods may be
unable to handle situations that were not properly explored
during training. The HAB-DF relies instead on the local
statistical performance of the individual data sources. In
addition, the decentralized architecture allows the experts to
operate asynchronously, while penalizing measurements that
are delivered to the fusion center with significant delays.
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Fig. 6: Evaluation of the performance of the experiment in which a recycling bin was tracked. Figure 6a and Figure 6b show that DSSTtld has a degraded
performance (around frames 100-300 and 500-800). This is consistent with Figure 6d, where DSSTtld suffers of a sudden drop of confidence value resulting
in an increment of the covariance that is ruled by the MD and the majority voting scheme. The HAB-DF has the best performance among all the approaches
as seen in Figure 6¢. Moreover, the transition between detectors is soft, allowing for the smooth motion control that can be seen in Figure 6e and Figure 6f.
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Fig. 9: Tracking a person in a gym with a UAV. Figures 9a, 9b, and 9c
show the behavior of the UAV along the trial. Figure 9d shows the adaptive
behavior of the HAB-DF during the experiment.

Finally, the weighted majority voting scheme allows sensors

that provide measurements which are discrepant or have low
confidence to be automatically discarded from the estimation.

Moreover, the two platforms tested show that this al-
gorithm is suitable for real-time applications with good
performance. Both platforms were able to follow practical
objects with different characteristics without any prior train-

ing.

Additionally, it shows that when detectors with different

performances are combined, they can outperform individual
methods.
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