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ABSTRACT 

DEEP NEURAL NETWORKS AS TIME SERIES FORECASTERS OF ENERGY 

DEMAND 

 

Gregory D. Merkel, B.S. 

Marquette University, 2017 

 

Short-term load forecasting is important for the day-to-day operation of natural 

gas utilities. Traditionally, short-term load forecasting of natural gas is done using linear 

regression, autoregressive integrated moving average models, and artificial neural 

networks.  Many purchasing and operating decisions are made using these forecasts, and 

there can be high cost to both natural gas utilities and their customers if the short-term 

load forecast is inaccurate. Therefore, the GasDay lab continues to explore new ways to 

make better forecasts. 

Recently, deep neural networks (DNNs) have emerged as a powerful tool in 

machine learning problems. DNNs have been shown to greatly outperform traditional 

methods in many applications, and they have completely revolutionized some fields. 

Given their success in other machine learning problems, DNNs are evaluated in energy 

forecasting.  

This thesis examines many DNN parameters in the context of the short-term load 

forecasting problem including architecture, input features, and use of synthetic data. The 

performance of the model is compared against several traditional forecast strategies, 

including artificial neural networks and linear regression short-term load forecasting 

strategies. Additionally, the DNN forecaster is evaluated as part of the GasDay ensemble. 

The DNN forecaster proposed in this thesis offers an average 6.98% improvement 

in terms of weighted mean absolute percent error (WMAPE) when included as part of the 

GasDay ensemble. Finally, ideas for future work are discussed. 
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CHAPTER 1  

Natural Gas Demand Forecasting 

 

This section is an introduction to the natural gas industry, the GasDay lab at 

Marquette University, and the short-term load forecasting problem. It also discusses the 

current forecasting techniques employed by the GasDay lab including inputs and 

forecasting models.  

1.1 Natural gas industry 

Much of the information in this section can be found on the United States Energy 

Information Administrationôs web site [1]. The natural gas industry consists of three main 

parts; production and processing, transmission and storage, and distribution. Like many 

fossil fuels, natural gas (methane) is found underground usually near or with pockets of 

petroleum. As such, it is a common byproduct of drilling for petroleum. When natural gas 

is captured, it often is processed to remove higher alkanes such as propane and butane, 

which produce more energy when burned and can be sold at a higher price. After the 

natural gas has been processed, it is transported via pipelines around the country and 

stored either as liquid natural gas in tanks or back underground in aquifers, salt caverns, 

and other underground spaces. This gas is purchased by local distribution companies 

(LDCs) who provide natural gas to residential, commercial, and industrial consumers of 

natural gas. This thesis focuses on the natural gas consumed by their customers of these 

LDCs. Subsets of the customers of LDCs separated by geography or by municipality are 

referred to as operating areas. Operating areas are defined by the individual LDCs and 
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can be as large as a state or as small as a few towns. The amount of natural gas used is 

often referred to as the load and is measured in dekatherms (Dth), which is approximately 

the amount of energy in 1000 cubic feet of natural gas.  

 For LDCs, there are several uses of natural gas, but the primary use is for heating 

homes and business buildings. This is referred to as heatload. Heatload changes based on 

the outside temperature. During the winter, when outside temperatures are low, the 

heatload is high. When the outside temperature is high during the summer, the heatload is 

approximately zero. Other uses of natural gas, such as cooking, drying clothes, heating 

water, and other household appliances, are called baseload. Baseload is not effected by 

weather and generally remains constant throughout the year. However, baseload may 

change due to changes in the number of customers. 

1.2 Marquette Universityôs GasDay lab 

GasDay at Marquette University operates as both a small business and a research 

laboratory. As a small business, GasDay works with 34 local distribution companies and 

forecasts approximately 20% of the United Statesô residential, commercial, and industrial 

natural gas consumption. As a research laboratory, GasDay develops techniques for 

forecasting, data cleaning, machine learning, and data science in an effort to improve the 

value provided to their customers. GasDay provides daily, hourly, and monthly forecasts 

and many other services to its customers. The main service provided by GasDay is daily 

forecasts for the demand of natural gas, which takes places from 10 A.M. one day to 10 

A.M. Eastern time the next day. This thesis focuses on this daily short-term load 

forecasting problem. 
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1.3 Why is natural gas forecasting important? 

Short-term load forecasting is important for the day-to-day operation of natural gas 

utilities. Many purchasing decisions are made using these forecasts, and there can be high 

cost to both natural gas utilities and their customers if the short-term load forecast is 

inaccurate. If the forecast is low, a gas utility may have to purchase gas at a much higher 

price; if the forecast is high, a gas utility may have to store the excess gas or pay a penalty 

[2]. Given the monetary importance of quality forecasts to natural gas utilities, it is critical 

that the GasDay lab explore new ways to make better forecasts.  

1.4 Factors in natural gas demand 

As mentioned earlier, the baseload of natural gas consumption for an operating 

area typically changes slowly as the number of customers, or their behavior, change. 

Given the steady nature of baseload, most of the effort in forecasting natural gas focuses 

on predicting the heatload. Hence, the most important factor effecting the natural gas 

consumption is the weather.  

 

Figure 1-1: Weighted combination of several northern U.S. metropolitan operating 

areas. 
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Seen in Figure 1-1, the temperature has roughly a linear relationship with load. 

However, there is however a kink in the line around 65 ęF. This occurs because at 

temperatures greater than 65 ęF, home and business owners start using electricity to cool 

their buildings rather than use natural gas to heat them. This makes the heat load zero and 

leaves only the base load at temperatures greater than 65 ęF. To handle this nonlinearity, 

heating degree days (HDD) are used instead of temperature, 

 m ax(0, )refH D D T T= - ,  (1-1) 

where T is the temperature and re fT  is the reference temperature [3]. Throughout this 

thesis, HDDs are written followed by their reference temperature. For instance, if the 

reference temperature is 65 ęF, the heating degree day variable is written as HDD65.  

In addition, a variant that accounts for wind called wind-adjusted heating degree 

day (HDDW) is used,  
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where ws is the wind speed in miles per hour.  

Besides HDDW, there are several other weather-based inputs that can be used in 

forecasting natural gas. One such input is cooling degree days (CDD), defined as 

 ( )m ax 0,
ref

C D D T T= - ,  (1-3) 

which accounts for temperature related effects when the temperature is above the 

reference. As seen in Figure 1-1, these effects are not as pronounced as those when the 

temperature is below the reference, but they are still present. Finally, the dew point 

temperature (DPT) is another effective input, as it captures humidity. 
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Figure 1-2: Weighted combination of several northern U.S. metropolitan operating areas 

colored by day of the week. This is the same data as in Figure 1-1. 

In addition to weather inputs, time-related inputs also play a role in gas demand. 

As can be seen in Figure 1-2, the day of the week (DOW) plays a role in natural gas 

demand. The demand for natural gas is less on weekends (Friday-Sunday) than on 

weekdays (Monday-Thursday), with Wednesday generally having the highest demand, 

and Saturday generally having the lowest demand. Day of the year (DOY) plays a role in 

determining demand as well, due to changes in homeowner behaviors between seasons. 

For instance, 50ºF may not result in everyone turning on their furnaces in early fall, but it 

is likely that furnaces will be on during the winter and early spring at 50ºF.  

1.5 Modeling techniques 

This section gives an overview of linear models and artificial neural networks. 

These are two common modeling techniques available to natural gas demand forecasters. 

The strengths and weakness of both models also are discussed. 
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1.5.1 Linear models 

Traditionally, short-term load forecasting of natural gas is done using multiple 

linear regression (LR) or autoregressive integrated moving average (ARIMA) models [4]. 

For customer demand s, forecast point k, and a set of m independent inputs like the ones 

discussed above, the linear regression model is defined as: 

 
0

1

Ĕ

m

k k j k j

j

s s xb b

=

º = +ä ,  (1-4) 

where ɓ0 through ɓm, are the coefficients that represent the effect that each input has on 

the demand [5]. Several models can be defined using this notation. The GasDay linear 

regression model uses many inputs, but for the sake of explanation, a five-parameter 

model is used, 

 0 1 2 3 4
Ĕ 6 5 5 5 6 5

k k k k k
s H D D H D D H D D C D Db b b b b= + + + D + .  (1-5) 

For this model, and most linear regression models for forecasting natural gas, ɓ0 is 

the base load. Similarly, the sum of ɓ1 and ɓ2 represents the heat load. Two reference 

temperatures are used to better model the transition between heating and non-heating days. 

ɓ3 accounts for the effect that the change in temperature between the previous day and the 

current day (ȹHDD) has on the current dayôs natural gas demand. This effect is discussed 

at length in [6]. Finally, ɓ4 allows the model to adjust to any temperature effects on 

demand during non-heating days. This coefficient is usually small, but not insignificant. 

The five-parameter linear regression model and other linear models perform well 

on linear stationary time-series, and thus have been used successfully for forecasting 

short-term load, which has roughly a linearly relationship with temperature [7]. 

Unfortunately, gas demand contains nonlinearities. Some of these nonlinearities are easy 
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for a proficient forecaster to capture using an LR model. For instance, by using heating 

degree days as an input instead of temperature, the major nonlinearity that occurs around 

65 ęF can be accommodated. However, natural gas demand also contains many smaller 

nonlinearities that either cannot be captured easily with LR or ARIMA models or are 

difficult  for forecasters to detect from the data. 

1.5.2 Artificial neural network 

The forecasting communityôs answer to the problem of nonlinearities has been to 

use artificial neural networks (ANNs) in place of, or in conjunction with, linear models 

[4], [8], [9]. Hornik et al. described them as ñuniversal approximators,ò meaning that they 

can be used to solve almost any regression problem [8]. Artificial neural networks are 

based on a simplified model of neurons in the human brain.  

 

Figure 1-3: Diagram of a single node of an ANN. 

Figure 1-3 shows a single node of an ANN, often called a neuron. Like the 

neurons in the human brain, the ANN neuron takes in information from other nodes, 

processes it, and sends an output based on that information. The calculation of this output 

Y is given as: 

 1 11 2 12 3 13 1
( )Y x W x W x W bs= + + + ,  (1-6) 
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where x is the set of inputs, w is the weights on each input, and b is a constant bias. The ů 

represents the transfer function. There are a variety of different transfer functions that can 

be used with neural networks. A collection of these nodes makes up a neural network.  

 

Figure 1-4: Three sequential neurons in a neural network. 

 Figure 1-4 shows three sequential neurons forming a simple artificial neural 

network. In the case of a neural network used to forecast natural gas X, on the left is a 

vector of the factors discussed in Section 1.4, while Y on the right is the forecast Ĕs . In this 

case, the calculation of the forecast is: 

 1 1 2 2 3 3
Ĕ ( ( ( ) ) )s Y X W b W b W bs s s= = + + +.  (1-7) 

For a neural network to perform well, there is probably more than one node in 

each layer, but Figure 1-4 is an easy way to visualize multiple layers. There are many 

ways to calculate the weight matrices and the biases, but the most common of these is 

backpropagation [10]. The training algorithm used to train the GasDay ANN is a neuron 

decoupled extended Kalman filter [11].  

1.5.3 Ensemble forecasting 

Another common technique in modeling natural gas demand, and modeling in 

general, is use of ensemble models. An ensemble model is used to describe any technique 

that combines the results of multiple forecasters to make a final forecast. For instance, the 

simplest ensemble is an average of the several forecasts. Even using this simple ensemble 
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modeling technique, a researcher is guaranteed to have a more accurate ensemble forecast 

than the least accurate of their individual forecasts on any given day [12]. A slightly more 

complicated ensemble may consist of weighting the models so that the final forecast is 

weighted average. For example, if a researcher were to ensemble two models, they might 

use weights of 0.35 and 0.65 if they know that one model generally performs better.  

The GasDay ensemble is called the Dynamic Post Processor (DPP), which is an 

ensemble of the GasDay LR model and the GasDay ANN [13]. The DPP is useful 

because, in addition to selecting initial weights, the DPP adjusts those weights depending 

on how the two models are performing. The DPP also has an advantage over other 

ensemblers when forecasting natural gas demand because it can adjust to changing 

demand. For instance, if an operating area sees a significant increase in the number of 

natural gas customers, the DPP automatically adjusts the forecast upward to compensate. 

More information about the DPP can be found in [13] and later in this thesis. 

1.6 Problem statement 

Recently, the machine learning community have been successful in replacing 

ANNs and other nonlinear models with deep neural networks (DNN) [14]. Längkvist 

discusses the use of DNNs for problems ranging from video analysis and motion capture 

to speech and music recognition [14]. DNNs also have led to unprecedented advances in 

many fields such as image pattern detection [15].  

As it will be described in depth later in Chapter 2, functionally, DNNs are just 

large ANNs; the main difference is in the training algorithms. ANNs are trained using 

gradient descent, which is computationally intensive. Large neural networks trained by 

gradient descent also are prone to overfitting data sets. DNNs avoid both of these 
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problems by using a restricted Boltzmann machine training algorithm to ñpre-trainò the 

model, followed by a few epochs of gradient descent [16]. 

The goal of this thesis is to adapt the DNN technology to short-term load 

forecasting of natural gas demand and to evaluate the DNNs performance as a forecaster. 

Little work has been done in the field of time series regression using DNNs, and almost 

no work has been done in the field of energy forecasting with DNNs. One notable 

example of literature on these subjects is Xueheng Qui et al., who claim to be the first to 

use DNNs for regression and time series forecasting [17]. They show promising results 

on three electric load demand time series and several other time series using twenty 

DNNs ensembled with support vector regression. The major problem with their work is 

that the DNNs used are quite small; the largest architecture consists of two hidden layers 

of 20 neurons each. Because of their small networks, Qui et al. do not take full advantage 

of the DNN technology.  

Another example of work in this field is Busseti et al. [18], who found that deep 

recurrent NNs significantly outperform the other deep architectures they used for 

forecasting energy demand. These results are interesting but demonstrated poor 

performance when compared to the industry standard in energy forecasting, and they are 

nearly impossible to reproduce, given the information in the paper.  

Some good examples of time series forecasting using DNNs include Dalto, who 

used them for ultra-short-term wind forecasting [19], and Kuremoto et al. [20], who used 

DNNs on the Competition on Artificial Time Series (CATS) benchmark. In both of these 

applications, DNNs outperformed neural networks trained by backpropagation. Dalto 

capitalized on the work of Glorot and Bengio when designing his network and showed 
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promising results [21]. Meanwhile, Kuremoto successfully used Kennedyôs particle 

swarm optimization in selecting their model parameters [22]. The work most similar to 

this thesis is Ryu et al., who found that two different types of DNNs examined performed 

better on short-term load forecasting of electricity than shallow neural networks and what 

they called a double seasonal Holt-Winters model [23]. 

Given the results of these papers, DNNs should surpass ANNs in most regression 

problems including the short-term load forecasting of natural gas problem. This thesis 

explores the use of DNNs to model a natural gas system. This is done by comparing the 

performance of the DNN to various benchmark models and the current GasDay model. 

Furthermore, this thesis discusses promising methods for applying DNNs to energy 

demand forecasting and exploring inputs, model parameters, and transfer functions. 

Finally, it discusses the value of adding a DNN component to the GasDay dynamic post 

processor. 

  



12 

 

 

 

CHAPTER 2  

Overview of Restricted Boltzmann Machines and Deep Neural Networks 

 

This chapter discusses how deep neural networks (DNNs) work and how to train 

them to solve regression problems.  

2.1 Restricted Boltzmann machines 

Fundamental to understanding DNNs are restricted Boltzmann Machines (RBM). 

This section describes how they work and how they relate to DNNs. Most of the 

information is based on [24] and [25]. 

2.1.1 Energy based models 

 RBMs are energy-based models. This means that for any input vector ὼ, they 

have an associated scalar energy based on an energy function Ὁὼ. A trained energy-

based model has lower energy when given inputs that are expected and high energy for 

inputs that are not expected [26]. For example, in a short-term load forecasting system for 

natural gas, if the input reserved for temperature is given some high value such as 250ęF, 

it is expected that a trained energy-based model would have high energy. For a simple 

energy-based model, the probability distribution is given as 

  

( )

( )

E x
e

p x
Z

-

= ,  (2-1) 

where 

 
( )E k

k

Z e
-

=ä ,  (2-2) 
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and Ὧ represents the set of all possible inputs to the energy-based model [24]. In other 

words, this simply means that the probability of vector ὼ is equal to the exponential of the 

energy function divided by the sum of the exponentials of each possible vector. The goal 

in training the energy-based model is to have the probability distribution ὴὼ be as close 

as possible to the actual probabili ty distribution of the inputs [26].  

2.1.2 Energy based models with hidden layers 

 

Figure 2-1: A restricted Boltzmann machine with four visible units and three hidden 

units. Note the similarity with a single layer of a neural network. 

For more complex energy-based models like RBMs, the hidden units may be 

arranged as in Figure 2-1. For these models, the calculation becomes slightly more 

complicated as the energy associated with a visible input ὺ must be calculated for each of 

the hidden units Ὤ. This probability distribution is given as [24], [25]: 
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For the sake of simplicity in notation in later equations, this can instead be written 

as [24] 

 
( )

( )

F v
e

p v
Z

-

= ,  (2-5) 

where  

 ( , )
( ) lo g

E x h

h

F v e
-

= - ä . (2-6) 

( )F v  is hence referred to as the free energy function.  

2.1.3 Restricted Boltzmann machines  

 

Figure 2-2: Visual representation of hidden and visible layer calculations. Note the 

similarity between these and the neurons of an artificial neural network. 

As stated before, the energy-based models of interest are restricted Boltzmann 

machines (RBMs). Figure 2-2 shows the RBMs have bias vectors ὦ and ὧ, that are related 

to the visible and hidden layers, respectively, a weight matrix ὡ which relates the hidden 
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vector to the visible vector. Assuming that the RBM is using binary units, which is true 

throughout this thesis, the transfer function at the nodes is sigmoidal. This means that the 

visible vector and hidden vector can be calculated from one another with

( )v sigm o id b W h¡= +  and ( )h sigm o id c W v= + , where the sigmoid function is [25] 

 
1

( )
1

t
s ig m o id t

e
-

=
+

. (2-7) 

The visible nodes are not dependent on one another, nor are the hidden nodes. 

This makes it simple to calculate the probability of any Ὤ for any given ὺ and vise-versa. 

These probabilities are [24] 

 ( | ) ( | )
i

i

p h v p h v=Ô   (2-8) 

and  

 ( | ) ( | )
j

j

p v h p v h=Ô . (2-9) 

Given this information, the energy function of the RBM is [24] 

 ( , )E v h b v c h h W v¡ ¡ ¡= - - - , (2-10) 

and the free energy function is [24] 

 ( ) lo g (1 )i i
c W v

i

F v b v e
+

¡= - - +ä . (2-11) 

2.1.4 Train ing restricted Boltzmann machines 

This section describes how to train a restricted Boltzmann machine for binary 

inputs, those scaled to be between 0 and 1, and a sigmoidal transfer function as described 

in Section 2.1.3. First, in a step known as the positive phase, the probability that each 

value in the hidden vector h is equal to 1 for a givenv  is calculated. This probability is 

[24] 



16 

 

 

 

 ( 1 | ) ( )P h v sigm o id c W v= = + .  (2-12) 

Then, a random sample is taken from a uniform distribution from 0 to 1 for each 

probability, to define a vector 
p

h . That ends the positive phase.  

In the next step, known as the negative phase, the vector 
p

h is used to calculate a 

probability that v  is equal to 1, [24] 

 ( 1 | ) ( ' )
p p

P v h sigm o id b W h= = + . (2-13) 

Again, a random sample is taken from a uniform distribution from 0 to 1 for each 

probability, this time to define a vector 
n

v . This ends the negative phase.  

After this, an output is calculated from the restricted Boltzmann machine using vn. 

This output is [24] 

 ( )
ou t n

h sig m o id c W v= + . (2-14) 

In the final step of training, the weights and biases are updated. These are defined for 

some learning rate h as [24] 

 

( ' ')
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h

h

« + -

« + -

« + -

.   (2-15) 

Using this algorithm, a restricted Boltzmann machine can be trained either using a vector 

to train individual training points as discussed above or in batches using matrices for h

andv .   

2.2 Stacking restricted Boltzmann machines to make neural networks 

As can be seen in Figure 2-1 and Figure 2-2, a trained RBM closely resembles a 

single layer of an artificial neural network. This allows us to stack RBMs to form a neural 

network. First, RBM1, is trained based on our input data. Then, after RBM1 is fully 
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trained the entire input set is fed into the visible layer of RBM1 and the outputs at the 

hidden layer are collected. These outputs are used as the inputs to train RBM2. This 

process is repeated after RBM2 is fully trained to get the inputs for RBM3, and so on. 

This process is shown in Figure 2-3. This training is unsupervised, meaning that no 

targets outputs are given to the model. It has information about the inputs and how they 

are related to one another, but the network is not able to solve any real problems yet.    

 

Figure 2-3: Graphical representation of how RBMs are trained and stacked to function 

as a neural network. 

The next step in training a deep neural network, often called ñfine tuning,ò 

involves using gradient descent to train the neural network to solve a particular problem. 

Our problem is short-term load forecasting, so actual natural gas load values are used as 

target outputs, and a set of features such as temperature, wind speed, day of the week, and 
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previous loads are used as the inputs. After the supervised training step, the DNN 

function similarly to a large artificial neural network.   
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CHAPTER 3  

Comparing Neural Network Training Algorithms  

 

This chapter discusses the metrics, models, data, and experimental methods that 

are used throughout this thesis. Then, a small neural network is trained using restricted 

Boltzmann machine (RBM) pretraining on each of 88 operating areas and is compared 

with several other models. The purpose of this experiment is to give the GasDay ANN 

and MATLAB ANN a fair comparison by using the same relatively small architecture 

and set of input features. It is concluded that the small RBM neural networks do not 

perform as well as the GasDay ensemble. However, they do perform better than all other 

models examined. Finally, this chapter introduces some of the graphs and tables that are 

used throughout this thesis to display the results. 

3.1 Metrics 

This thesis uses several metrics to evaluate the performance of each model. The 

first of these is the root mean squared error (RMSE):  

 [ ]
2

1

1
ĔR M S E ( ) ( )

N

n

s n s n
N =

= -ä , (3-1) 

for a testing vector of length N, actual demand( )s n and forecasted demand Ĕ( )s n . RMSE 

is a powerful metric for short-term load forecasting of natural gas because it naturally 

places more value on the days with higher load. These days are important, as they are 

when natural gas is the most expensive, which means that purchasing gas at the last 

minute or having bought too much gas can be costly. Unfortunately, RMSE is magnitude 

dependent, meaning that larger systems have larger RMSE if the percent error is constant, 
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which makes it a poor metric for comparing the performance of a model across different 

systems.  

To account for the weaknesses of RMSE, this thesis also uses mean absolute 

percent error (MAPE): 

 
1

Ĕ( ) ( )1
M A P E 100
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-
= ³ ä . (3-2) 

Unlike RMSE, MAPE is not dependent on the magnitude of the system. This means that 

it is more useful for comparing the performance of a method between operating areas. It 

does, however, put some emphasis on the lowest flow days, which, on top of being the 

least important days to forecast correctly, are often the easiest days to forecast. As such, 

MAPE is not the best metric for looking at the performance of the model across all the 

days in a year, but can be used to describe the performance on a particular day type. 

 The final error metric used in this thesis is weighted MAPE (WMAPE): 
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  (3-3) 

This error metric does not emphasize the low flow and less important days while being 

independent of the magnitude of the system. This means that it is the most effective error 

metric for comparing the performance of our methods over the course of a full year. 

 In addition to the error metrics discussed above, the metric of training time is 

evaluated for each model. This is important for the business use case. Every year the 

GasDay business trains and delivers approximately 6000 artificial neural networks and 

linear regression models to LDCs across the country. Hence, a model that takes an 

excessively long time to train may not be useful to GasDay. In other words, training time 
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is simply used to distinguish between models that can be trained in a reasonable time and 

those that cannot. 

3.2 Training and testing data 

One common problem with training any type of neural network is that there is 

always some amount of randomness in the results [27]. This means that it is difficult to 

ascertain whether a single trained model is performing well because the model 

parameters are good or because of probability. Hanson and Salamon mitigated this 

problem using cross validation [27]. This means that they trained many models on the 

different parts of the same set of data so that they could test their models on multiple 

parts of the data.  

In this thesis, the problem of randomness is mitigated by having training and 

testing data from 88 operating areas around the United States. These operating areas 

come from many different geographical regions including the Southwest, the Midwest, 

West Coast, Northeast, and Southeast and thus represent a variety of climates. The data 

sets also include a variety of urban, suburban, and rural areas. This diverse data set allows 

for broader conclusions to be made about the performance of the models.  

For each of the 88 operating areas, several models are trained using at least 10 

years of data for training and 1 year for testing. The inputs to these models are the 

GasDay standard inputs discussed in Section 1.4. All  the weather inputs in this 

experiment are observed weather as opposed to forecasted weather for the sake of 

simplicity. 
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3.3 Small restricted Boltzmann machine neural network 

The neural network that is the focus of this chapter is a shallow neural network 

with two hidden layers of 12 and 4 nodes pretrained using RBMs. Each RBM is trained 

for 1000 epochs, and 1000 epochs of backpropagation are performed. The size and 

number of these layers is the same as the other neural networks to which it is compared 

to. Additionally, this network and all other forecasters discussed in this section are given 

the same inputs to ensure that a fair comparison is done between the various forecasters. 

Despite its small size, the RBM trained neural network is referred to as a DNN 

throughout this chapter to simplify notation. 

3.4 Models for comparison 

In this preliminary experiment, this thesis compares the performance of deep 

neural networks to five different models. The primary of these models is the GasDay 

dynamic post processor and component models discussed in Section 1.5. For the 

remainder of this thesis, the GasDay dynamic post processor is referred to as GDDPP. 

The GasDay linear regression and artificial neural network models are referred to as 

GDLR and GDANN, respectively. The GDLR model is tuned specifically to perform 

better on harder to forecast days [4]. On the other hand, the GDANN is trained using a 

Kalman-filter based algorithm [11] and has two hidden layers of size 12 and 4. The 

purpose of using these models in this experiment is to determine if the small DNN 

performs comparably to the current GasDay models. In addition to the models used by 

GasDay, this thesis also compares the DNN to models built using MATLAB tools. The 

first is a model built using the MATLAB neural network toolbox. This model is referred 

to as MLANN. This network is trained using the Levenberg-Marquardt training algorithm 



23 

 

 

 

and two hidden layers of sizes 12 and 4. The maximum epochs is set to 1000, but it is 

unlikely that this is reached because of how the Levenberg-Marquardt algorithm avoids 

overfitting. Similarly, this experiment also uses MATLABs built-in linear regression 

model. This model is referred to as MLLR. The purpose of including MLANN and 

MLLR is for repeatability of these experiments outside the GasDay lab, as the current 

GasDay models are proprietary and cannot be fully disclosed. 

3.5 Results 

This section gives an overview of the results of comparing the models discussed 

in Section 3.4. It compares the DNN to the GDDPP, each of its components, and the 

MATLAB built -in ANN and LR models on all 88 areas. The small DNNs perform as 

well as the GDDPP and better than all the other models. Then, the GDDPP and DNN are 

compared across unusual days, which are defined in Appendix B, for all of the areas. 

They perform similarly. Finally, three areas are anonymized and examined individually. 

One area is an example where the DNN performed better overall, one area is an example 

where the GDDPP performed better overall, and on the final area they performed about 

the same. 
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3.5.1 ñAll d aysò comparison 

This section compares the small DNN to the GDDPP and to all of the other 

models. 

 

Figure 3-1: This is a histogram of the differences in WMAPE between the GDDPP and 

the DNN. Values on the left of the thick line at 0 indicate areas where the GDDPP 

performs better. Those on the right indicate areas where the DNN performs better. 

Figure 3-1 shows a histogram of the differences between the weighted MAPE of 

the DNN forecaster over the course of a year and the weighted MAPE of the GDDPP 

over the course of the same year. Each instance represents one of the 88 operating areas 

on which the models were build. Every instance right of the center line is an example of 

an area where the DNN had a lower weighted MAPE than the GDDPP, and each instance 

to the left of the center line represents an area where the GDDPP has a lower weighted 
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MAPE. It appears in Figure 3-1 that on average the GDDPP performs better than the 

DNN. This difference is statistically significant, as a left-tailed t-test has a p-value of 

0.0072. These results are relatively unsurprising, as this is a comparison between a single 

model and an ensemble of models.  

 

Figure 3-2: This is a histogram of the differences in WMAPE between the GDLR and the 

DNN. Values on the left of the thick line at 0 indicate areas where the GDLR performs 

better. Those on the right indicate areas where the DNN performs better. 

Next, the DNN model is compared to the component models of the GDDPP. First 

is the GDLR. Figure 3-2 shows that the DNN performs much better than the GDLR over 

a majority of the areas. The majority of the areas represented on the right side of the 

center line and only two of those that are on the left are outside of one point of weighted 

MAPE. This difference is supported by a p-value of 3.24x10
-4

. This is to be expected, as 
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the GDLR can only capture linear trends, while the neural network can capture both 

linear and nonlinear trends.  

 

Figure 3-3: This is a histogram of the differences in WMAPE between the GDANN and 

the DNN. Values on the left of the thick line at 0 indicate areas where the GDANN 

performs better. Those on the right indicate areas where the DNN performs better. 

Of greater interest is the comparison between the DNN and the GDANN. In this 

case, the models have identical architectures; only the training algorithm differs. These 

two models perform similarly, with only 19 of the 88 areas having a difference in 

performance greater than one point of weighted MAPE. Still, both visually in Figure 3-3 

and mathematically with a p-value of 0.0018, it is apparent that the DNN performs better 

than the GDANN.  
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Finally, the DNN is compared to the MLANN and MLLR models. Figure 3-4 

shows both comparisons. The MATLAB models are not as good as the DNN. This is 

supported by p-values, which are essentially zero and visually, as most of the instances 

appear on the right side of the graphs. In particular, there is only one area on which the 

MLLR model performed better than the DNN forecaster. 

 

Figure 3-4: This is a histogram of the differences in WMAPE between the MLLR and the 

DNN and between the MLANN and DNN. Values on the left of the thick line at 0 indicate 

areas where the MATLAB model performs better. Those on the right indicate areas where 

the DNN performs better. 

3.5.2 ñUnusual daysò comparison 

Given the similar performance between the GDDPP and the small DNN on all 

days, it becomes important to analyze the performance of both on unusual days. Unusual 

days are days that tend to be harder or more important to forecast. For instance, the first 

heating days of a heating season or the first non-heating days after the heating season are 

typically hard days to forecast. Meanwhile, the coldest days of the year are not typically 
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the most difficult days to forecast, but they tend to be important days to forecast well. 

More information on unusual days and how they are calculated is found in Appendix B.  

 

Figure 3-5: This is a histogram of the differences in WMAPE between the GDDPP and 

the DNN for various unusual day types. Values on the left of the thick line at 0 indicate 

areas where the GDDPP performs better. Those on the right indicate areas where the 

DNN performs better. The results of a left-tailed t-test on each of these distributions are 

included in Table 3-1. 
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 Figure 3-5 shows that the GDDPP generally performs better than the DNN on all 

of the unusual day types, but Table 3-1 shows that the only statistically significant 

differences are on colder than normal heating days and the first non-heating days. This is 

despite the fact that when compared across all days there is a statistically significant 

difference. This is a promising sign for the DNN as it performs better on the unusual days 

than it does on all days. 

Table 3-1: Left-tailed t-test comparing the GDDPP and the DNN on each unusual day 

type. 

Unusual Day Type p-value 

All Days 0.0072 

Coldest Days 0.1668 

Colder Than Normal Heating Days 0.0427 

Warmer Than Normal Heating Days 0.2080 

Colder Than Yesterday 0.1488 

Warmer Than Yesterday 0.3480 

First Heating Days 0.2229 

First Non-Heating Days 0.0018 

 

3.5.3 Individual m odels 

In this section, a further inspection is done on some individual operating areas. 

These areas are chosen based on the difference between the performance of the DNN and 

the GDDPP. The first is the area with the greatest difference in weighted MAPE in favor 

of the DNN, the second is the area with the greatest difference in weighted MAPE in 
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favor of the GDDPP, and the final area is the median area which, in this case, results in a 

0.246 difference in weighted MAPE in favor of the GDDPP. 

 

Figure 3-6: The best performing DNN when compared to GDDPP. All models are 

included for reference. RMSE magnitudes are removed to ensure customer anonymity.  

 The results for the first area, shown in Figure 3-6, illustrates a few key points, 

which are reiterated with each of the areas discussed in this section. First, a model which 

performs better when measured on all days may not perform better when evaluated on a 

particular day type. The example here is that the GDDPP significantly outperformed the 

DNN on the coldest days and on colder than normal heating days, despite the fact that the 

DNN performs better on almost every other metric. The other interesting thing is that the 










































































































































