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ABSTRACT
DEEP NEURAL NETWORKS AS TIME SERIES FORECASTERS OF ENERGY
DEMAND

Gregory D. Merkel, B.S.

MarquetteUniversity, 2017

Shortterm load forecasting is important for the éayday operation of natural
gas utilities. Traditionally, shoterm load forecasting of natural gas is done using linear
regression, autoregressive integrated moving average models, and artificial neura
networks. Many purchasing and operating decisions are made using these forecasts, and
there can be high cost to both natural gas utilities and their customers if theghort
load forecast is inaccurate. Therefore, the GasDay lab continues to exgMoveays to
make better forecasts.

Recently, deep neural networks (DNNs) have emerged as a powerful tool in
machine learning problems. DNNs have been shown to greatly outperform traditional
methods in many applications, and they have completely revokeidsiome fields.

Given their success in other machine learning problems, DNNs are evaluated in energy
forecasting.

This thesis examines many DNN parameters in the context of thetshmoroad
forecasting problem including architecture, input featuned,use of synthetic data. The
performance of the model is compared against several traditional forecast strategies,
including artificial neural networks and linear regression stevrh load forecasting
strategies. Additionally, the DNN forecaster is ea#dd as part of the GasDay ensemble.

The DNN forecaster proposed in this thesis offers an average 6.98% improvement
in terms of weighted mean absolute percent error (WMAPE) when included as part of the
GasDay ensemble. Finally, ideas for future work aseudised.
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CHAPTER 1

Natural Gas Demand Forecasting

This sections an introduction to the natural gas industry, the GasDay lab at
Marquette University, and ttehorttermload forecasting problenit alsodiscusgsthe
current forecasting techniques employed by the GasDay lab including inputs and

forecasting models.

1.1 Natural gas industry

Much of the information in this section can be found on the United States Energy
Il nformati on Admi/[h.iTeetnatumal gainddssy congiss ofshnedine
parts; production and processing, transmission and st@adelistributionLike many
fossil fuels, natural gas (methane) is found underground usually near or with pockets of
petroleum. As sucht is acommon byproduct of drilling for petroleum.NW¥n natural gas
is capturedlit oftenis processed to remove highedkanes such as propane and butane
which produce more energy when burned and can be sold at a higheAfiecée
natural gas has been processeld transported via pipelines aralithe countryand
stored eitheas liquid natural gas in tanks back underground in aquifers, salt caverns
and other underground spacéhkis gas ispurchased by local distribution companies
(LDCs) who provide natural gas to residential, commercial jrshabtrial consumers of
natural gas. This thesis focuses on the natural gas consurttegrioyistomers of these
LDCs. Subsets of the customers of CB separated by geographybgrmunicipality are

referred to as operating areas. Operating areas ared &fynthe individual DCs and



can be as large as a state or as small as a few towns. The amount of natural gas used i
often referred to as thead and is measured in dekatherms (Daich is approximately
the amount of energy in 10@ubic feet of natal gas

For LDCs there areseveral uses of natural gas, but the primary uie tseating
homes and business building$is is referred to as heatload. Heatload changes based on
the outside temperature. During the winteinen outside temperaturegdow, the
heatloads high. When the outside temperature is high during the suptimeheatloads
approximately zero. ther uses of natural gas, such as cooking, drying cldtkasing
water,and other household appliancaee called baseload. Baseload is not edi &ty
weather and generallgmairs constant throughout the yedtowever, baseload may

change due to changes in the number of customers.

12 Marquette Univiab sityobds GasDay

GasDay at Marquette University operaéssboth a small business and a research
laboratory. As a small business, GasDaykswith 34 local distribution companiesnd
forecasts appr oxi mat edsigent@lQctmneicial, tarkdendustmai t e d
natural gas consumptioAs a esearchaboratory, GasDay developschniques for
forecastingdata cleaning, machine learning, and data science in an effort to improve the
value provided to their customefSasDay provides daily, hourly, and monthly forecasts
and many other services to disgomers.The main service provided by GasDay is daily
forecasts for the demand of natugak which takes placesom 10 A.M.one dayto 10
A.M. Eastern timehe next dayThis thesifocuseson thisdaily shortterm load

forecasting problem.



1.3 Why is natural gas forecasting important?

Shortterm loadforecasting is important for the d&y-day operation of natural gas
utilities. Many purchasing decisions are made using these forecasts, and there can be high
cost to both natural gas utilities an@itrcustomers if the sheterm loadforecast is
inaccurate. If the forecast is low, a gas utility may have to purchase gas at a much higher
price; if the forecast is high, a gas utility may have to gtereexcess gas or pay a penalty
[2]. Given the monetary importance of quality forecasts to natural gas utititgesritical

that the GasDay lab explore new ways to make better forecasts.

1.4 Factors in natural gasdemand

As mentoned earlier, the baseload of natural gassumptiorfor anoperating
areatypicaly changs slowly as the number of customgos their behaviorchange
Given the steagnature of baseload, most of the effort in forecasting naturdbgases
on predicting the heatload. Hengghemostimportant factor effecting theatural gas

consumption is the weather.
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Figure 1-1: Weighted combination of several northédrS.metropoltan operating
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Seen inFigurel-1, the temperature hasughlya linear relationship with load.
However, here is however a kk in the line around 68&-. This occurs because at
temperature greater than 68, home and business ownetsrt using electricity to cool
their buildings rather than use natural gas to heat them. This nhaklesat loadero and
leaves only the base load at temperaturestgrehan 6%F. To handle this ndmearity,
heating degree days (HDD) are used instead of temperature

HDD = max(0Trer -T ), (-1
whereT is the temperature and.: is the reference temperatyB3. Throughout this
thesis, HDDs arevritten followed by their reference temperature. For instance, if the
reference temperature is 85 the heting degree day variable v&itten asHDD65.

In addition,a variant thaaccounts for wind calledind-adjusted heating degree

day (HDDW)is used,

é 72+ wWs C
THDD ws> 8 T
HDDW = j 80 (s (-2
A 152+ ws A
'"'HDD ————— ws<8!
i 160 1

wherewsis the wind speeith miles per hour
BesidetHDDW, there are several otheveathetbased inputs that can be used in

forecasting natural gas. One suigputis cooling degree days (CDDJefined as

CDD =max(0,T -T_ ), (1-3)
which accouns fortemperature related effects when the temperatwaiease the
reference. As seen Figurel-1, these effects are nas pronounced as those when the

temperature is below the referentut they are still preseriinally, the dew point

temperature (DPT) is another effective in@git captures humidity.
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Figure 1-2: Weighted combinationf several northertd.S.metropolitan operating areas

colored by day of the week. This is the same a@ataFigure 1-1.

In addition to weather inputs, tirrelated inputs also play a role in gas demand.
As can be seen irigurel-2, the day of the weeDOW) plays a role in natural gas
demand. The demand for natural gas is less on weekends (Budagy) tha on
weekdays (Monday hursday)with Wednesday generally having the highest demand
and Saturday generally havirftetlowest demanday of the yea(DOY) plays a ro¢ in
determining demand as wedliie to changes in homeowner behaviors between seasons.
For instance, 3% may not result in everyone turniog their furnaces early fall but it

is likely that furnaceswvill be onduring the winter and early sprirag S5CF.

1.5 Modeling techniques
This section gives an overview of linear models and artificial neural networks.
These are two common modeling techniques availablettwat@as demand forecasters.

The strengthand weakness of both modelsoarediscussd



1.5.1 Linear models

Traditionally, shorterm loadforecastiry of natural gas is done using multiple
linear regression (LR) @utoregressive integrated moving average (ARIMA) modéls
For customer demarsgi forecast poink, anda set ofmindependent inputs like the ones

discussed aboyéhelinear regression model eefined as
Sko §< :bo a bj&-’ (1'4)

whereby throughby, are the coefficients that represent the effect that each input has on
the demand5]. Severalmodels can be defined using this notation. The GasDay linear
regression model uses many inpuist for thesake of explanatigma five-parameter
modelis used
ﬁ=b0 + HDD65, +/HDDS5  +bHDD, LEDD65 . (1-5)

For this model, and most linear regression modelfofecastinghatural gashy is
the basdoad. Similarly, the sum ob, andb, represents the heat loddvo reference
temperatures are used to better model the transition between heating -duectom days.
bs accounts for the effect thidte change itemperaturéetween the previous day and the
currentday@dibDD)has on t he current dayoOsdseussedur al g
at length in6]. Finally, b, allows the model to adjust to atgmperature effects on
demand during neheating days. This coefficient is usually smiallt not insignificant.

The fiveparameter linear regression model and other limeatels perform well
on linear stationary timseries, and thus have been usecceasfully for forecasting
shortterm load, which has roughly a linearly relationship with temperéfiire

Unfortunately,gas demand contains nonlinearities. Some of thedmearitiesareeasy



for a proficient forecastdo capture using an LR modebiFnstanceby using heating
degree days as an input instead of temperatgenajor nonlinearity that occurs around
65¢ Ean beaccommodatedHowever, natural gas demand also contains rsamafler
nonlinearites that either cannot loapturedeasilywith LR or ARIMA models or are

difficult for forecastersa detect from the data

1.5.2 Artificial neural network
The forecasting communilys a n thepeoblembfmorinearitieshas been to
useatrtificial neural networks (ANB) in place of, or in conjunction with, linear models
[4],[8],[9J. Hor ni k et al . descr iximaolsot meamniasgiuhate
canbe used to solve almaahy regression proble[8]. Artificial neural networksare

based on a simplified model of neuronghia human brain.

Figure 1-3: Diagram of a single node of an ANN.

Figurel-3 shows a single node of an ANN, often called a neuron. Like the
neurons in the human brathe ANN neurontakes ininformation from other nodes,
processes jiand sends an output based on that information. The calculdtilois output

Y is given as:

Y=s(xW, +xW, %W, §, (1-6)



wherex is the set of inputsy is the weights on each input, alnés a constant bias. Thie
represents theansfer function. There are a variety of different transfer functions that can

beused with newal networks A collection of these nodes makes up a naugdhork.

1 1 1
b N &
W1 ) . W2 o W3 /

Figure 1-4: Three sequentialeurons in a neural network

Figurel-4 shows three sequential neurdosming a simple artificial neural
network In the case of a neural netwared to forecast natural g&son the left isa
vector of the factors discussed in Section WhHile Y on the right ighe forecasg. In this

casethe calwlation of the forecast:is

E=Y =s(s( $XW QW HW B (1-7)
For a neural network to perform wehereis probablymore than one node in
each layerbut Figurel1-4 is an easy way to visualize multiple layerbere are many
ways to calculatéhe weightmatrices and the biases, but the mostroom of these is
backpropagatiofiLO]. The training algorithm used to train the GasDay ANN is a neuron

decoupledxtendedKalman filter[11].

1.5.3 Ensembk forecasting

Another common technique in modeling natural gas demand, acelingpin
general, is use of ensemble models. An ensemble nsaakdd to describe any technique
that combines the results of multiple foasters to make a finedrecast. For insince, the

simplest ensemble @&n average of theeveral forecast&ven using this simple ensemble



modelingtechnique, a researchergsamlnteed to have a more accurate ensemble fdrecas

than the least accurate of thiidividual forecast®n any given dajl12]. A slightly more

complicated ensemble may consist of weightimgmodels so that the final forecast |

weighted average. For example, if a researcher twezasembléwo modelstheymight

use weights of 0.35 and 0.65 if thegow that one model generally performs better.
TheGasDay ensembis called the Dynamicd3t Processor (DPRYhich is an

ensemble of the GasDay LR model and the GasDay MISN The DPP is useful

because, in addition to sele initial weights the DPPadjuss those weights epending

on how the two models are performing. The C¥® has aadvantage over other

ensemblersvhen forecasting natural gas deméedausét can adjust to changing

demand. For instance, if an operating area sees a significant increase in the number of

natural gas customerthe DPPautomaticallyadjuss the forecast upardto compensate.

More information about the DPP can be foun{lli8] and later in this thesis

1.6 Problem statement

Recently, the machine learning community have been successful in replacing
ANNs and other nonlinear models with deep neural networks (IPNNL) Langkvist
discusses the use of DNNs faoplems ranging from video analysis and motion capture
to speech and music recognitidd]. DNNs alsohaveled to unprecedented advances in
many fields such amage pattern detectigt5].

As it will be describé in depth later in Chapter functionally DNNs are just
large ANNSs; the main difference is in the training algorithms. ANNs are trained using
gradient desent, which is computationally intensive. Large neural networks trained by

gradient descent also are prone to overfitting dataBblfss avoid both of these
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problems by using a restricted Bolat nmamimmem
model, folowed by a few epochs of gradient desg¢#&6f.

The goalof this thesis is to adapt tiENN technology to shoiterm load
forecastingof natural gas demand atwlevaluate the DNNs performanas a forecaster
Little work has been done in the field of time series regression using DNNs, and almost
no work has been done in the field of energy forecasting with DNNs. One notable
example of literature on these subjastXueheng Qui et al., who claim to be the first to
use DNNs for regression atiche series forecastir{d7]. They show promising results
on three electric load demand time series and sevéral time series using twenty
DNNs ensembled with support vector regression. The major problem with their work is
that the DNNs used are quite small; the largest architecture consists of two hidden layers
of 20 neurons each. Because of their small nédsyd@ui et al. do not take full admtage
of the DNN technology

Another example of work in this field is Busseti et[&8], who found thatleep
recurrent NNs significantly outperform téher deep architectures they used f
forecasting energy demanthese results are interesting but demonstrated poor
performance when compared to the industry standard in energy forecasting, and they are
nearly impossible to reproduagiven the informaon in the paper.

Some good examples of time series forecasting using DNNs include Dalto, who
used them for ultrghortterm wind forecastingll9], and Kuremoto et aJ20], who used
DNNs on the Competition on Atrtificial Tim8eries (CATS) benchmarkn both of these
applications, DNNs outperformed neural networks trained by backpropagation. Dalto

capitalized on the workfdslorot and Bengio when designing his netwonkl showed
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promising result$21]. Meanwhi |l e, Kuremoto successful
swarm optimization in seléag their model paranters[22]. The work most similar to

this thesis is Ryu et al., who found that two different types of Dékldsiined performed

better on shorterm loadforecasting of electricity than shalloneural networks and what

they called a double seasonal Haltnters mode[23].

Given the results of these papdd®NNs should surpass ANNSs in most regression
problemsincluding the shorterm loadforecastingof natural gaproblem This thesis
explores the use of DNNs to model a natural gas sy3teimisdone by comparing the
performance of the DN various benchmark models athe current GasDay med
Furthermoe, this thesisliscusespromising methods for applying D¢ to energy
demand forecasting and explorimguts, model parameters, amdnsfer functions.

Finally, it discusgsthe value of adding DNN component to the GasDay dynamic post

processar
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CHAPTER 2

Overview of Restricted Boltzmann Machinesand Deep Neural Networks

This chaptedisciseeshow deepneuralnetworks(DNNs) work and how to train

them to solve regression problems.

2.1 Restricted Boltzmann machines
Fundamental to understanding DNNSs are restricted BoltzmauhikMes (RBM).
This sectiordescribe how they work and how they relate to DNN&ost of the

information is based of24] and[25].

2.1.1 Energy based nodels

RBMs are energagbased models. This means that for any input vegttrey
have an associated scalar energy based on an energy fi@ctior trained energy
based model hdswer energy when giveinputs that are expected ahidh energy for
inputsthat ae notexpected26]. For example, in a shetérm loadforecasting system for
natural gas, if the input reservid temperature is given some high value suchba® 2 F
it is expeced thata trained energbased model would havegh energy. For a simple

energybased model, the proldity distribution is given as

-E(x)

= 2-1
p(x) m (2-1)

where

z=5 e, (2-2)
k
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andQrepresents the set of all possible inputs to the edeggd modgPR4]. In other

words, this simply means that the probability ofteecis equal to the exponential of the
energy function divided by the sum of the exponentials of each possible vector. The goal
in training the energpased model is to have the probability distributiot be as close

as possible to the actual praiiaty distribution of the inputf26].

2.1.2 Energy based models with hiddendyers

Figure 2-1: A restrided Boltzmann machine with four visilirits and thredidden

units. Note the similarity with a single layer of a neural network.

For more compleenergybased mdels like RBMsthehidden unitanay be
arrangedas inFigure2-1. For these models, the calculation becomes slightly more
conplicated aghe energy associated with a visible inpuhust be calculatefibr each of
the hidden unit¥2 This probaility distribution is given a§24], [25]:

CE(uh)

PV =A p(vh) =5 —. (2-3)

k k

where

7 = a e-E(k,h) ) (2_4)
K
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For the sake of simplicity in notation in later equatighss can instead be written

as[24]

- F(v)

p(v) = , (2-5)
Z

where

F(v)= -logg e """. (2-6)

h

F (v) ishencereferred to as the free energy function.

2.1.3 Restricted Boltzmann nmachines

Figure 2-2: Visual representation of hidden awigible layer calculations. Note the

similarity between these and the neurons of an artificial neural network.

As stated before, the energgsed models of interest are res@icBoltzmann
machinegRBMs). Figure2-2 shows theRBMs have bias vectordandd thatare related

to the visible and hidden layerespectivelya weight matrixo which relates the hidden
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vector to the visible vector. Assumititatthe RBM is usinginary units, which is true
throughout this thesishe transér function at the nodes sggmoidal. This means that the
visible vector and hidden vector can la¢calated from one another with

v = sigmoid( b +Wi h andh = sigmoid( ¢ +Wy, where thesigmoid function i§25]

sigmoid( ) = —. (2-7)
l1+e
The visible nodes are not dependent on one anatbeare the hidden nodes.
This makes it simple to calculate the probability of &fgr any givenb and viseversa.
These probabilities af@4]
p(thivy =0 p(hlVv (2-8)
and
p(vin)=Q p(v, I h. (2-9)
Given thisinformation, the energy fution of the RBM i424]
E(v,h)= -biv <h h Wy, (2-10
andthe free energy funicin is[24]
F(v) = -biv & log@@ &™"). (2-11)

2.1.4 Training restricted Boltzmann machines
This sectiordescribs how to train a restricted Boltzmann machine for binary
inputs, those scaled to be between 0 and 1, and a sigmoidal transfer function asddescribe
in Section2.1.3 First,in a step known as the positive phake probability that each
value in the hidden vectoris equal to Xor a giverv is calculatedThis probability

[24]
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P(h=1|v) =sigmoid(c “WY. (2-12
Then a random sample is taken from a uniform distribution from O to 1 for each

probability, to define a vectar, . That ends the positive phase.
In the next step, known as the negative phase, the vedoused to calculate

probability thatv is equal to 1]24]
P(v=1|h ) =sigmoid(b W' h). (2-13)
Again,a random sample is taken from a uniform distribution from 0 to 1 for each

probability, this time to define a vectey . This ends tla negative phase.

After this, an output is calculated from the restricted Boltzmann machine ysing
This output i424]
h,,, = sigmoid( ¢ +WYy) . (2-19

In the final step of training, the weights and biases are updated. These arefdefined

some learning rate as[24]

W « W+/7(hpv'-h v

b« b+h(v -v) . (2-15)
C « C+h(hp -h )

out

Using this algorithma restricted Boltzmann machine can be trained either using a vector
to train individual training points as discussed above or in batches using matriges for

andv .

2.2 Stacking restricted Boltzmann machines to make neural network
As can be seen iRigure2-1 andFigure2-2, a trained RBM closely resembles a
single layer of an artificial neural network. Thi®as us to stack BMs to form a neural

network. FirstRBM1, is trainedbased on our input data. Thexiter RBM1 is fully
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trained the entire input set is fed into the visible layer of RBM1 and the outputs at the
hidden layer are collecte@ihese outputare used as the inputs to train RBMBis
processs repeated after RBM2 is fully trained to get the inputsfiBM3, and so on.

This process is shown Figure2-3. This training is unsupervised, meaning that no
targets outputs agiven to the model. It hasformation about the inputs and how they

are relagéd to one another, but the networka able to solve any real problemst

A
.

REM2

Figure 2-3: Graphical representation of how RBMs are trained and stacked to function

as a neural network.

~

The next step in training a deep neuralwnetr k , of finetningétal | ed
involves using gradient descent to train the neural network to solve a particular problem.
Our problem is shoiterm load forecasting, so actual natural gas load values are used as

target outputsand a set of features such as temperatured gpeed, day of the week, and
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previous loads are used as the inputs. After the supervised training step, the DNN

function similarly to a largertificial neuralnetwork.
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CHAPTER 3

Comparing Neural Network Training Algorithms

This chaptediscusses the metrics, models, data, and expehaathods that
are usedhroughout this thesis. Thea small neural network is trained usiggtricted
Boltzmann machinéRBM) pretraining on each of 8&erding areas and is compared
with several other model3.he purpose of this experiment is to give the GasDay ANN
and MATLAB ANN a fair comparison by using the same relatively small architecture
and set of input featureks.is concluded thathe smallRBM neural networks do not
perform as well as theasDay ensenid. However, they do perform better than all other
modelsexaminedFinally, this chaptemtroduces some dhe graphs and tables that are

used throghout this thesis to display tihesults.

3.1 Metrics
This thesisauses several metrics to evaludtee performance of each model. The

first of these igheroot mean squared err(RMSE):

RMSE = \/ia [&n) -s(n)]”, (3-1)
N

for a testing vector of lengt, actual demanst n) and forecasted demarsn) . RMSE

is apowerful metric for shofterm loadforecasting of natural gas because it naturally
places more value on theygawith higher loadThese days are importaias they are
when natural gas is the most expensive, which means that purchasing gas at the last
minute or havindought too much gasan becostly. Unfortunately, RMSE is magnitude

dependentmeaning that larger systems have larger RMSE if the percent error is constant
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which makes it a poanetric for comparing the performance of a model across different
systems.
To account for the wé&aesses of RMSEhis thesislso use mean absolute

percenterror (MAPE):

A COREE]
MAPE =1003—§ ———.
N n=1 S(n)

(3-2)
Unlike RMSE, MAPE is not dependent on the magnitude of the system. This means that
it is more useful for comparing the performance of a method between operating areas. It
does however, put some emphasis on the lowest flow dalgh, on top obeing the
least important days to forecast correctly, are often the easiest days to forecast. As such,
MAPE is not the best metric for looking at the performance of the model atrtss

days in a yeaibut can be used to describe the performance on a particular day type

The final error metrizse in this thesiss weighted MAPEWMAPE):

3 |&n- (0
WMAPE =100 34%—— (3-3)
a s(n

This error metric does not emphasize the low flow and less important days while being
independent of the magnitudetbe system. This means that it is the most effective error
metric for comparingtie performance of our methods ot course of a full year.

In addition to theerror metrics discussed abotee metric of training times
evaluated for each moddrhis is important for the business use case. Every year the
GasDaybusiness trains and delivers approximately 6000 artificial neural networks and
linear regression models kD Cs across the country. Hencanadel that takes an

excessively long time tvain may not be useful ©@asDay. In other words, training time
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is dmply used to distinguish between models that can be trained in a reasonable time and

those that cannot.

3.2 Training and testing data

One common problem with training any type of neural network is tilea¢ tis
alwayssome amountfaandomness itheresults[27]. This means that it is difficult to
ascertain whether a single trained model is performing well because the model
parameters are good or because of probability. Hanson and Salamorenhitigst
problem using cross validatig@7]. This means that they trained many models on the
different parts of the same set of data so that they could test their models on multiple
partsof the data.

In this thesis, the problem of randomness is mitigated by h#&ngimgng and
testing datdrom 88operatingareas around the United Stat€seseoperatingareas
come from many different geographical regions including the Southwest, theebtjdw
West Coast, Northeast, and Southeast and thus represent a variety of climates. The data
sets also include a variety of urban, suburban, and rural areaslividrse data set allows
for broacer conclusions to be made about the performance of the model

For each of the 88peratingareas, several models d@rained usingt leastlO
years of data for training and 1 year for testing. The inputsesemodels are the
GasDay standard inputiscussed in &tionl1.4. All the weather inputs in this
experiment arebservedveatheras opposed to forecasted weatioerithe sake of

simplicity.
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3.3 Small restricted Boltzmann machine neural retwork
The neural networkhatis the focus of this chapter is a shallow neural network
with two hidden layers of 12 andnrbdes pretrained using RBMSach RBM is trained
for 1000 epochsand 1000 epochs of backpropagation are perforitiee size and
number of these layers is the saméhasothemeural networks to whicth is compared
to. Additionally, tis networkand all other forecastediscussed in this sectiane given
the same input® ensure that a fair comparison is done between the various forecasters.
Despite its small sizeghe RBM trained neural networkreferred to asa DNN

throughout this chaptéo simplify notation.

3.4 Models for comparison

In this preliminary experimenthis thesiscompareshe performance of deep
neural networks to five different modelkhe primaryof thesemodelsis the GasDay
dynamic post processor andmponent models discussed ec8onl1.5. For the
remainder of this thesithe GasDg dynamic posprocessor iseferred to as GDDPP
The GasDay linear regression and ari#icieural network models areferred to as
GDLR and GDANN respectivelyThe GDLR model is tuned specifically to perform
beter on harder to forecast dg#§. On the other hand, the GDANN is trained using a
Kalman-filter based algorithnil 1] and has two hidden layers of size 12 an@ihe
purpose ofising these models in this experiment is to determine if the small DNN
performs comparably to the current GasDay modeladdition to the models used by
GasDaythis thesisalso compargthe DNN to models built using MATLAB tools. The
first isa model bt using the MATLAB neural network toolbox his model igeferred

to as MLANN This network is trained using the Levenb&tgrquardt training algorithm
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and two hidden layers of sizes 12 and 4. The maximum epochs is set (bUiG0R
unlikely that ths isreachedecause of how the Levenbevtarquardt algorithm avoids
overfitting. Similarly, this experimerdlso use MATLABS built-in linear regresion
model. This model iseferred to as MLLRThe purpose of including MLANN and
MLLR is for repeatabily of these experiments outside the GasDaydalihe current

GasDay models are proprietary and cannot be fully disclosed.

3.5 Results

This section gives an overview of the résof comparing the models discussed
in Section 3.41t comparetshe DNN to theGDDPP, each of itseemponents, and the
MATLAB built-in ANN and LR model®n all 88areasThe small DNNgerform as
well as the GDDPP and better than all the other models. Then, the GDDPP and DNN are
compaed across unusual dayshich are defined in Appelix B, for all of the areas
Theyperform similarly. Finally, three areas aneonymizedand examined individually
One area is an example where the DNN performed better overall, one area is an example
where the GDDPP performed better overall, and offinlaéarea they performed about

the same.
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3.5.1 AAlldaysd oraparison
This section compares tsenallDNN to the GDDRP andto all of the other

models.
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Figure 3-1: This is a histogram ohe differences iWWMAPEbetween the GDDPP and
the DNN Values on the left of the thick line at O indicate anghsre the GDDPP

performs better. Thason the right indicate areas where the DNN performs better

Figure3-1 showsa histogram of the differences between the weighted M&fPE
the DNN forecaster over the course of a year and the weighted MAPE of the GDDPP
over the course of the same year. Each icstepresents one of the 8peratingareas
on which the models were build. Every instance right of the center line is an example of
an area where the DNN had a lower weighted MAPE than the GDddiReach instance

to the left of the center line represeatsarea where the GDDPP has a lower weighted
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MAPE. It appears irFigure3-1 that on averge the GDDPP performs better than the
DNN. This difference istatisticallysignificant as a |&-tailed ttest has pvalue of
0.0072 These results are relatively unsurprisiag this is a comparison between a single

model and an ensemble wiodels.
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Figure 3-2: This is ahistogram of he differences iIWWMAPEbetween the GDLR and the
DNN. Values on the left of the thick line at O indicate anghsre the GDLRerforms

better. Thos on the right indicate areas where the DNN performs better

Next, the DNN models comparedo the component models of the GDDPP. First
is the GDLR Figure3-2 shows that the DNN performs much better than the GDL& ov
a majority ofthe areas. e majority of he areas represented on the right side of the
center lineandonly two ofthose that are on the left are outsidemé point ofweighted

MAPE. This difference is supported by aalue 0f3.24x10*. This is to be expecteds
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the GDLR can only capture ar trendswhile the neural network can capture both

linear and nonlinear trends.

All Days
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Figure 3-3: This is a histogram ohe differences iWWMAPEbetween the GDANN and
the DNN Values on the left of the thick line at O indicate anehsre the GDANN

performs better. Thason the right indicate areas where the DNN performs better

Of greater interest is the comparison between the DNN and the GDIANINS
case the models havielentical architectuie onlythe training algorithndliffers. These
two models perfan similarly, with only 19 of the 8&reas having a difference in
performance greater than one pointwaightedMAPE. Still, both visually inFigure3-3
and mathematically with ayalue 0f0.0018 it is apparent that the DNN performs better

than the GDANN.
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Finally, the DNN iscompared to the MLANN and MLLR modekigure3-4
showsbothcomparisos. The MATLAB models are not as good as the DNN. This is
supported by ywalues which are essentially zero and visualg most of the instances
appear on the right side of the graplmsparticular, there is onlgnearea on which the

MLLR model performed better than the DNN forecaster.
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Figure 3-4: This is a histogram ohe differences iIWWMAPEbetween the MLLR and the
DNN and between the MLANN and DNRKalues on the left of the thick line at O indicate
areaswhere the MATLAB modpkrforms better. Thason the right indicate areas where

the DNN performs better

352 iUnusawsodcompari son
Given the similaperformance between tii@DDPP and the sm&al)NN on all
days it becomes important to analyze the performance of both on unusual days. Unusual
days are days that tend to be harder or more important to forecast. For irtsiarficgt
heating days of a heating season or the firsthreating days after the heating season are

typically hard days to forecasvleanwhile, the coldest days of the year are not typically
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the mosdifficult days to faecastbut they tend to benportant days to forecast well.
More information on unusual days and how they areuatied isfound inAppendixB.

Coldest Days
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Figure 3-5: This is a histogram ohe differences iWWMAPEbetween the GDDPP and
the DNN for various unusual day typ&&lues on the left of the thick line at O indicate
areaswhere the GDDPRperforms better. Th@son the right indicate areas whete
DNN performs betteiThe results of a lefiailed ttest on each of these distributions are

included inTable3-1.
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Figure3-5 shows that the GDDPP generally performs better than the DNN on a
of the unusual day typglsut Table3-1 shows that the only statistically significant
differences are on colder than normal heating days and the firteadimg days. This is
despite the fact that when compared across all days there is a statistically significant
difference. This is @romising sign for the DNN as it performs better on the unusual days
than it doeon all days.

Table3-1: Left-tailed ttestcomparing the GDDPP and the DN#¥ each unusual day

type
Unusual Day Type p-value
All Days 0.0072
Coldest Days 0.1668

Colder Than Normal Heating Days| 0.0427

Warmer Than Normal eating Days| 0.2080

Colder Than Yesterday 0.1488
Warmer Than Yesterday 0.3480
First Heating Days 0.2229
First NonHeating Days 0.0018

3.5.3 Individual m odels

In this section, a further inspectiondene on some individualperatingareas.
These areas aohoserbased on the difference between the performance of thedddN
the GDDPP. The first ihe area with the greatest differemceveighted MAPEN favor

of the DNN, the second the area with the greatest differemeaveighted MAPEN
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favor of the ®DPP, and the final areatise median area which, in this cassults in a

0.246 difference in weighted MAPE in favortbe GDCPP.

Figure 3-6: The best performing DNN when compare@&@DPP. Al modelsare

includedfor referenceRMSE magnitudes aremoved to ensure customer anonymity.

The results for the first area, showrHigure3-6, illustrates a few key points
which arereiterated with each of the arediscussed in this sectionir§t, a model which
performs better when measured on all days mapedorm better when evaluated on a
particular day type. The example here is thalGRDPP significantly outperformed the
DNN on the coldest days and colder than normal heating dagespite the fact that the

DNN performs better on almost every othestric. The otheinterestingthing is that the















































































































































































































