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1 Introduction

Chemical Risk Assessment or evaluation of the extent of
toxic effects associated with chemical exposure is necessary
for protection of human or environmental health. Compu-
tational toxicology is the in silico prediction of adverse or
toxic effects of chemicals on living organisms. In silico
models provide a less expensive, faster and more efficient
alternative to otherwise time-consuming conventional
animal and clinical testing methods. Quantitative Structure
Activity Relationship (QSAR) models are the most widely
used alternative to conventional animal and laboratory test-
ing. They are theoretical models that relate a quantitative
measure of chemical structure to a physical property or
a biological effect. QSAR model development is a 3-step
process: (i) generation of molecular descriptors, (ii) selection
of relevant molecular descriptors, and (iii) statistical map-
ping of the descriptors to the toxic endpoint under consid-
eration.[1,2]

QSAR models have been continuously improving with
new machine learning algorithms, molecular descriptors
and training databases.[3–5] However, several studies show
that they are still not very predictive for mechanistically
complex endpoints like carcinogenicity.[6,7] These limitations
are primarily due to the multiple mechanisms of action as-
sociated with more complex toxic endpoints. Furthermore,
the OECD principles for QSAR model development empha-

size on mechanistic interpretation of results (if possible) in
addition to appropriate measures of goodness-of-fit, ro-
bustness and predictivity.[8–10] Mechanistic interpretation of
toxicity is complex and it is difficult to capture all the as-
pects of toxicity from a structural perspective. Develop-
ment of new mechanism based methods and a paradigm
shift towards a systems biology based approach towards
toxicology is, therefore, a necessity in the future develop-
ment of computational toxicology.
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2 Quantitative Biological Activity Relationships

Recent advances in the field of “omics” technologies (pro-
teomics, metabolomics, toxicogenomics etc.) offer intrigu-
ing avenues for assessing chemical response in in vitro sys-
tems. High throughput screening methods facilitate the
screening of large number of chemicals against a variety of
Environmental Protection Agency’s (EPA) ToxCast project[13]

and the Tox21 consortium of the U.S. EPA, National Toxicol-
ogy Program (NTP), National Institutes of Health Chemical
Genomics Center (NCGC), and U.S. Food and Drug Adminis-
tration (FDA)[14,15] are two sources of high throughput in
vitro activity data for thousands of chemicals across several
biochemical assays. In vitro methods are developed to pro-
vide mechanistic insight for building risk assessment strat-
egies. In vitro data can be utilized in several ways to assist
in computational modeling approaches to predict toxicity.
Firstly, they can offer insight into how different chemicals
can alter or perturb certain biochemical pathways that may
result in toxic responses. Secondly, they can help in the
identification of biological response patterns (biomarkers)
associated with different toxic endpoints. Thirdly, they can
help in elucidating the mechanism of action involved with
various toxic endpoints.[16] Lastly, they can be used to de-
velop biological similarity based computational models for
toxicity prediction. The underlying concept is based on the
assumption that mechanistically related toxic chemicals will
display similar patterns of biological activity in various in
vitro assays.[17] Quantitative Biological Activity Relationships
(QBAR) can, thus, be defined as theoretical models that
relate a quantitative measure of biological similarity to
a toxic effect. The underlying principle behind QBAR
models is that chemicals with similar biological responses
are likely to have similar toxic effects.

Several studies have demonstrated the use of in vitro
data in the development of predictive QBAR models for in
vivo toxicology.[18–22] The results of these studies for carcino-
genicity prediction show that all high throughput assays
do not contribute equally as predictors of in vivo carcino-
genicity. The report on carcinogenicity prediction trials by
the U.S. National Toxicology Program (NTP) states that car-
cinogenicity is generally a poorly predicted endpoint and
makes a guideline that best predictivemodels tend to be
those that integrate biological mechanism-based data.[23]

This recommendation aligns with the Organization for Eco-
nomic Co-operation and Development (OECD) principles
for use of (Q)SAR models in regulation, which includes
a mechanistic interpretation (if possible) among other crite-
ria for model validation.[8,9] Based on these reports, we pro-
pose the use of specific in vitro assay data in identification
of relevant biological descriptors and development of
QBAR models for carcinogenicity prediction. We demon-
strate how in vitro data can be used independently to de-
velop predictive models for in vivo carcinogenicity via two
case studies. The case study in Section 3.1 demonstrates
how we can select relevant in vitro assays as biological de-

scriptors for developing QBAR models (analogous to selec-
tion of relevant chemical descriptors for QSAR modeling).
The case study in Section 3.2 demonstrates how different
in vitro assays for selected endpoints can be used together
as biological descriptors for developing a QBAR model
(analogous to statistical mapping of chemical descriptors to
a toxic endpoint in QSAR modeling).

3 Case Studies

3.1 Identification of a Novel Biological Descriptor Based on
Xenobiotic Induced Cytochrome P450 Transcription for
Carcinogenicity Prediction

3.1.1 Cytochrome P450 Enzyme System

Cytochrome P450 (CYP) enzymes are the most important
enzymes in the metabolism process in mammals and are
primarily responsible for the metabolism (degradation and
elimination) of xenobiotics. CYP enzymes are subdivided
into various families based on the percentage of amino
acid sequence identity. The major families are CYP1, CYP2
(with five subfamilies CYP2A-E), and CYP3. There are about
57 identified CYP enzymes that are found to be involved in
metabolism reactions. Approximately 75 % of the drugs are
metabolized by P450s. Out of those, five major isoforms
viz. , CYP2D6, CYP3A4, CYP2C9, CYP2C19 and CYP1A2 are
involved in ~75–90 % metabolic reactions. CYP2D6 alone is
involved in the metabolism of ~70 % marketed drugs.[24–26]

Xenobiotic metabolizing enzymes can help in detoxifica-
tion by elimination of potential carcinogens or facilitate
toxicity by conversion of primary non-carcinogens (procar-
cinogens) into secondary carcinogenic metabolites. Procar-
cinogens usually require transformation into a more elec-
trophilic from to cause DNA damage and cancer. Thus, they
can be classified into two categories. The first class includes
enzymes that are more involved in drug metabolism, such
as CYP2A6, CYP2B6, CYP2C9, CYP2C19 and CYP2D6. The
second class includes CYP1A1, CYP1A2, CYP2E1 and
CYP3A4 which are found to be involved in the metabolism
of procarcinogens. Significant effort has been spent in char-
acterization of the mechanism of activation of procarcino-
gens and toxicants by P450 enzymes.[27,28]

3.1.2 Cytochrome P450 Induction and Carcinogenicity

Cytochrome P450 enzymes are either expressed constitu-
tively in fixed amounts or induced by certain substrates. In-
duction is usually a protective mechanism and helps in de-
toxification, but can also lead to an increase in production
of carcinogenic, mutagenic and/or cytotoxic metabolites.[29]

Several clinical studies have shown significantly increased
or decreased levels of certain P450s in tumor tissue as com-
pared to normal tissue suggesting a relationship between
CYP induction and tumor development.
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Polycyclic aromatic hydrocarbons (PAHs) are known carci-
nogens, which are distributed everywhere in the environ-
ment.[30] PAHs are usually metabolized by CYP1A1 and
CYP1B1 enzymes. Many studies have demonstrated that
CYP1As are highly inducible by carcinogenic (PAHs).[31] Such
feedback cycle enables the PAHs to induce their own me-
tabolism into carcinogenic forms. CYP1B1 has been found
to be expressed at abnormally high levels in tumors (122
out of 127) under investigation.[32,33] It is the most ex-
pressed form of CYP1 family in breast cancer tissue.
CYP1B1 is hypothesized to be involved in tumor growth
and progression. CYP1B1 bears ~40 % homology with both
CYP1A1 and CYP1A2 enzymes. CYP3A enzymes play an im-
portant role in catalyzing the metabolism of different
drugs, carcinogens and endogenous substances.

Variation in expression of different P450 enzymes leads
to significant changes in carcinogenic response. Notable
agreement has been seen between the Ames test for geno-
toxicity and ENACT enzyme induction assay; and they seem
to align with the potential carcinogenicity of test chemicals.
Induction of CYP enzymes has been hypothesized to be as-
sociated with potential toxicity and tumor occurrences at
certain sites.[34,35] The observation of such prominent induc-
tion of P450 enzymes by the PAHs and their increased ex-
pression in tumor tissue raises concerns for the safety of
humans and animals in general. The impact of these stud-
ies led to profound influence on the drug development,
cancer research, and toxicology. Pharmaceutical companies
employ a general policy in the drug development process
to discontinue drug development if the drug shows CYP1
inducibility, for fear of possible toxic or carcinogenic ef-
fects.[36] P450 enzymes that are involved in procarcinogen
activation and metabolism are reasonably well conserved
in their expression among different species. Therefore,
P450 enzyme induction is an important system for analyz-
ing the interrelations between induction of drug metabo-
lism and chemical toxicity in general. In this study, we in-
vestigate the role of simultaneous induction of three P450
enzymes in identification of carcinogens.

3.1.3 Methods

In Vitro Assay Data : Cellzdirect enzyme induction data for
CYP1A1, CYP1A2 and CYP3A4 was obtained from the phase
I of U.S. EPA’s ToxCast database.[13,37] CellzDirect assay re-
ports fold-change in expression (above basal levels) of the
enzymes in an in vitro test after exposure to chemicals for
6, 24, and 48 h. The data set consists of 320 chemicals
across the three enzymes. We selected the chemicals which
had fold-change data for all three enzymes for 6hr (dataset
1) and 24 h (dataset 2) time points. The filtering reduced
the number of chemicals to 17 in dataset 1 and 16 in data-
set 2.

Carcinogenicity Data: The experimental in vivo carcinoge-
nicity data for test chemicals is obtained from publicly
available carcinogenic potency database (CPDB)[38] and

chemical carcinogenesis research information system
(CCRIS).[39] The distribution of carcinogens to non-carcino-
gens is 4 : 13 for dataset 1 and 8 : 8 for dataset 2.

Chemical Diversity: Diversity of the chemical dataset is an
important measure for model validation and robustness. Di-
versity of chemicals in the two datasets was evaluated by
the AP Tanimoto coefficient. Tanimoto coefficient ranges
between 0 and 1, where 0 indicates completely dissimilar
and 1 indicates completely similar. Chemicals with a Tanimo-
to coefficient of 0.7 and greater are considered biologically
similar molecules.[40] Figure 1 shows the distribution of
chemicals with respect to each other indicating structurally
diverse nature of chemicals in both the datasets.

Machine Learning Algorithm : Support Vector Machines
(SVM), a supervised machine learning algorithm, is used in
this study for classification and regression analysis. It is
a linear binary classifier which calculates an optimal hyper
plane for categorizing data, which consist of pairs of values
(xi :yi) : i = 1,. . ,n where xi is the data point with k features (fj :
j = 1,…,k) and yi is the corresponding class label. A hyper
plane separates all data points of one class from those of
the other class and is used to classify any new data
points.[41,42] SVM models are especially suited for this prob-
lem because they were originally designed for training data
with small size and binary classifiers.

Svmtrain,[43] a Matlab SVM implementation is used for
this analysis. The svmtrain function is used with default pa-
rameters and the linear kernel function. Fold-change in ex-
pression of CYP450 enzymes is used as features in model
classification and the actual experimental value is used as
the class label. A new chemical with enzyme induction data
can be classified using the svmclassify function based on
the hyper plane generated using the training data set as
explained in Section 3.1.4.

Model Validation : We perform external model validation
using leave one out cross validation (LOOCV). N SVM
models were developed each with (N–1) chemicals as the
training set and 1 chemical as the test set. The following
standard metrics were then calculated for the performance
assessment of the model:

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

Accuracy ¼ TPþ TN
TPþ FNþ TNþ FP

where, TP is true positives, TN is true negatives, FP is false
positives and FN is false negatives reported in the tests. Ac-
curacy or concordance is a measure of correctness of over-
all predictions. Sensitivity is a measure of correctness in
prediction of positives or carcinogenic chemicals and spe-
cificity is a measure of correctness in prediction of nega-
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tives or non-carcinogenic chemicals. We also calculate the
Receiver Operating Characteristics (ROC) which is a plot of
true positive rate (sensitivity) versus false positive rate (1-
specificity). The ROC plot demonstrates how the per-
formance of a binary classifier changes as the threshold pa-
rameters are varied.[44]

Performance Comparison with In Silico Tools: The per-
formance of the SVM classifier is compared with three stan-
dard in silico QSAR tools viz. , Toxtree (expert knowledge-
based),[45] OECD Toolbox[46] (statistical) and Vega[47] (hybrid).
The tools make a binary prediction about carcinogenic po-
tential of the test chemicals.

3.1.4 Results

The SVM separates the two classes (carcinogens and non-
carcinogens) by generating a hyper plane for each training

dataset in the LOOCV analysis. A new test chemical is evalu-
ated based on the fold-change in the expression of
CYP1A1, CYP1A2 and CYP3A4 and classified as carcinogenic
or non-carcinogenic depending upon its distance from the
separating hyperplane. Statistical performance of the SVM
classifier in comparison to the various in silico tools is sum-
marized in Table 1. As shown, the accuracy is improved to
as high greater than 80 % for both the datasets. Sensitivity
and specificity are also greatly improved as compared to
the in silico tools. The results are more relevant for dataset
2 which is more balanced with an equal distribution of pos-
itives and negatives.

Figure 2 shows the receiver operating characteristics of
the SVM classifier with reference to the in silico tools. An
ideal binary predictor would have zero false predictions
and so the desired point on the ROC plot is the top left
corner where sensitivity is one and (1-specificity) is zero.

Figure 1. HeatMap representation of the chemical diversity of the two datasets measured in terms of Tanimoto distance. The annotations
in each cell correspond to the distance between the two chemicals (numbers). The colorbar on the right shows mapping of the distance
(range: 0 – 1) to a gray colorscale.
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The red line corresponds to the performance of a random
classifier which does not have any preferences in a binary
outcomes. Since the predictions are binary in nature, each
classifier is represented as a point on the ROC plot. The
closer the prediction is to the ideal point, the greater is the
predictive ability of the classifier. As seen, SVM classifier
offers better balance between sensitivity and specificity
and out performs the in silico tools for both the datasets.

3.1.5 Discussion

The SVM classification QBAR model suggests a strong cor-
relation between carcinogenic potential and the ability of
test chemicals to simultaneously induce the transcription of
CYP1A1, CYP1A2 and CYP3A4 enzymes. The ROC curve
demonstrates a better trade-off between sensitivity and
specificity in SVM classification versus in silico tools used.
SVM classification also has better performance metrics than
in silico QSAR tools demonstrating the advantage of using
biological data as descriptors for predictive modeling.

Figure 1 shows how structurally diverse the chemical da-
tasets are with reference to Tanimoto similarity index. It is
interesting to observe that even with such a diverse data-
set there is an apparent correlation between chemical carci-
nogenicity and the ability to simultaneously induce the
three enzymes. This demonstrates that even without struc-
tural similarity we can successfully predict a toxic response
based on biological similarity. This observation validates
the concept behind QBAR modeling. The findings illustrate
that xenobiotic induced cytochrome P450 expression (in
vitro data) can be successfully used as a descriptor in QBAR
modeling for carcinogenicity prediction.

3.2 QBAR Model of In Vitro Genotoxicity Assays for
Carcinogenicity Prediction

3.2.1 Carcinogenicity, Mutagenicity and In Vitro Genotoxicity
Assays

Carcinogenic chemicals can be broadly categorized as gen-
otoxic and non-genotoxic based on their mechanism of

action. Genotoxic carcinogens exert their carcinogenic abili-
ty by direct damage or alteration of the DNA. Mutagenic
toxicity is the ability of a physical or chemical agent to
cause mutations by damage to the DNA.[48,49] Owing to the
correlations between mutagenicity and carcinogenicity, mu-
tagenic toxicity is widely used as an indicator of possible
carcinogenicity. Short term in vitro mutagenicity tests are,
therefore, widely used to assess genotoxic carcinogenici-
ty.[50]

Experimentally, mutagenicity is routinely assessed by the
Ames test, which is an in vitro bacterial reverse mutation
assay to test genotoxicity.[51] The Ames test is a benchmark
method for mutagenicity testing by virtue of its well estab-
lished standard protocol and acceptance within the regula-
tory agencies. Over the past decades, several other bacteri-
al mutagenicity tests have been developed which are now
being used worldwide because of their concordance with
the Ames test. In vitro genotoxicity assays are particularly
gaining importance because they: (i) present themselves as
a short term and an effective alternative to long term in
vivo rodent cancer studies, (ii) offer an insight into the
mechanism behind genotoxic mode of action of chemicals,
and (iii) can be used in the quantification of risk associated
with genotoxic chemicals.[52,53]

Unlike genotoxic carcinogens, there is no clear under-
standing of the mechanism of action of non-genotoxic car-
cinogens. Carcinogenesis by non-genotoxic carcinogens
can occur due to chronic cell injury, immunosuppression,
increased secretion of trophic hormones, receptor activa-
tion, or CYP450 induction (also inferred in Section 3.1).[48,54]

Given the complex nature of non-genotoxic carcinogenicity,
the results of in vitro genotoxicity assays are not sufficient
and could well be over-conservative and mechanistically
unjustifiable. For instance, negative result in the Ames test
cannot necessarily be translated into a negative result for
carcinogenicity, which leads to increased false negative pre-
dictions. The National Toxicology Program (NTP) conducted
a study on the ability of the Ames test to predict carcinoge-
nicity and reported good accuracy but low sensitivity
(~45 %). The Ames test is also reported to have ~85 % re-
producibility rate and ~70 % concordance with structural
alerts for carcinogenicity.[55]

In general, in vitro genotoxicity assays are reported to
have low sensitivity for prediction of carcinogenicity. The
use of genotoxicity testing strategy for carcinogenicity pre-
diction, thus, comes with a caveat of misleading false posi-
tive and false negative predictions. The latter case of false
negatives is especially important under REACH regulations
for regulatory acceptance of computational toxicology
models.[10] The performance of different assays varies quite
widely and, therefore, no single test should be considered
as a gold standard for carcinogenicity prediction. A step-
wise approach using a battery of in vitro genotoxicity
assays should be performed to overcome the weaknesses
of a single test.[56–58] We propose that this protocol be ad-
justed to mathematically combine the results of different

Table 1. Performance metrics for the in silico QSAR tools and the
in vitro data based SVM Classifier.

Accuracy (%) Sensitivity (%) Specificity (%)

Dataset 1 (n = 17)
Toxtree 64.7 100.0 53.9
Vega 82.4 50.0 92.3
OECD Toolbox 52.9 100.0 38.5
SVM Classifier 88.2 75.0 92.3
Dataset 2 (n = 16)
Toxtree 56.3 50.0 62.5
Vega 43.8 12.5 75.0
OECD Toolbox 62.5 62.5 50.0
SVM Classifier 81.3 87.5 75.0
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genotoxicity assays to arrive at a final prediction. Such
a combination is expected to improve the sensitivity and
overall concordance while still preserving the mechanistic
insight from each of the in vitro assays. In this project, we
use in vitro genotoxicity assay data as biological descriptors
for carcinogenicity prediction as a proof-of-concept for de-
velopment of proposed QBAR models.

3.2.2 Methods

In Vitro Genotoxicity Assay Data: The European Centre for
the Validation of Alternative Methods (ECVAM), released
a list of 22 genotoxic and 42 non-genotoxic chemicals for
the evaluation of the ability of various in vitro tests to pre-
dict rodent carcinogenicity. We identified the results of 9

Figure 2. ROC plot of in vitro data based SVM classification, Toxtree, Vega and OECD Toolbox. (a). Dataset 1 (n = 17); (b). Dataset 2 (n = 16).
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high throughput in vitro genotoxicity assays (Ames, micro-
nucleus, H2AXISV, Vitotox, Radarscreen, RAD51, Cystatin,
p53, Nrf2)[59–61] in open literature for the ECVAM set to de-
velop a QBAR model for carcinogenicity prediction.

Carcinogenicity Data: The experimental in vivo carcinoge-
nicity data for test chemicals is obtained from publicly
available carcinogenic potency database (CPDB)[38] and
chemical carcinogenesis research information system
(CCRIS).[39] Chemicals with both chemical in vivo carcinoge-
nicity and in vitro assay data were finally selected for clas-
sification analysis. This filtering led to a total of 56 chemi-
cals in the dataset. The distribution of carcinogens to non-
carcinogens in the dataset is 31 : 25.

Machine Learning Algorithm : Random Forests,[62] a ma-
chine-learning classification algorithm that produces an en-
semble of unpruned decision trees for classification is used
in this study. Each tree is developed by (i) selecting a boot-
strap sample from the training data with replacement, (ii)
randomly selecting the best descriptor variables at each
node and growing the tree, and then (iii) estimating the
classification error by testing the tree on the remaining
data. The new data is classified based on the majority pre-
diction of all the trees in the ensemble. The implementa-
tion is relatively simple since only two parameters need to
be specified: the number of trees in the forest and the
number of predictor variables at each node. The number of
trees is generally proportional to the number of predictor
variables, so that each predictor is likely enough to be se-
lected. The number of predictor variables is generally de-
faulted to square root of the total number of variables.[63–65]

The RF algorithm is especially suited for this problem be-
cause: (i) the algorithm can assess the importance of the
different predictor variables (in vitro assays) and select
them accordingly at different decision nodes incorporating
multiple modes of action, (ii) it does an internal per-
formance assessment on the left out training data, thus,
strengthening the analysis, and (iii) it is robust against over
fitting. In general, the error rate (strength) of a RF depends
upon the correlation between the trees and the strength of
individual trees. Higher correlation leads to increased error
rates and higher strength of each tree leads to decreased
error rates.[66,67] We used the RF implementation, Treebag-
ger,[68] in Matlab for our analysis. The Treebagger algorithm
uses bagging to develop an ensemble of decision trees for
classification. There is no recommended threshold for the
number of trees and usually the number is varied to ob-
serve any performance changes. Based on different articles
on using RFs, we varied the number of trees between 5
and 500 and used default values for other parameters.

3.2.3 Results

We perform external model validation using leave one out
cross validation (LOOCV) technique and evaluate the met-
rics defined in Section 3.1.3. Table 2 summarizes the corre-
lation analysis of in vitro genotoxicity assays to rodent car-

cinogenicity tests. The benchmark Ames assay has a sensi-
tivity of only ~49 % whereas the H2AXIS assay has the
highest overall accuracy or concordance of ~70 %. In gener-
al, all the genotoxicity assays have high specificity but low
sensitivity (<52 %) for the given ECVAM dataset. The corre-
sponding statistics for RF classification results are summar-
ized in Table 3. Similar to reports in a study[69] increasing

the number of trees did not lead to improved prediction
accuracy. The best classification metrics are obtained at
generating only 5 trees. RF classification with 5 trees im-
proves the sensitivity to ~61 %.

Figure 3 shows the receiver operating characteristics of
the RF classifiers with reference to the in vitro assays. The
red line corresponds to the performance of a random clas-
sifier that does not have any preferences in a binary out-
comes. As seen, RF classifiers have higher sensitivity as
compared to the genotoxicity assays and show improved
rate of false negatives.

Table 2. Performance metrics of genotoxicity assays.

Accuracy (%) Sensitivity (%) Specificity (%)

Ames 67.9 45.2 96.0
MN 64.3 41.9 92.0
H2AXISV 69.6 51.6 92.0
Vitotox 64.3 41.9 92.0
Radarscreen 62.5 45.2 84.0
RAD51 60.7 35.5 92.0
Cystatin A 66.1 41.9 96.0
P53 66.1 48.4 88.0
Nrf2 62.5 54.8 72.0

Table 3. Performance metrics of the in vitro data based RF classifi-
er (QBAR model) with varying number of trees.

Number of Trees Accuracy (%) Sensitivity (%) Specificity (%)

5 67.9 61.3 76.0
10 62.5 51.6 76.0
20 62.5 58.1 68.0
30 58.9 54.8 64.0
40 58.9 54.8 64.0
50 64.3 58.1 72.0

100 58.9 54.8 64.0
110 58.9 54.8 64.0
120 62.5 58.1 68.0
130 58.9 54.8 64.0
140 62.5 54.8 72.0
150 62.5 54.8 72.0
200 62.5 54.8 72.0
300 58.9 51.6 68.0
400 60.7 54.8 68.0
500 62.5 54.8 72.0
600 64.3 58.1 72.0
700 64.3 58.1 72.0
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3.2.4 Discussion

The results of the example case study demonstrate that RF
classification addresses the issue of low sensitivity of in
vitro genotoxicity assays as discussed in Section 3.2.1. High
sensitivity is especially important under REACH require-
ments for regulatory purposes i.e. , to protect environment
and human health. Gain in sensitivity happens at the ex-
pense of specificity or higher rate of false positives which
also affects the overall accuracy. It is important for a classifi-
er to have high sensitivity in order to reduce the number
of false negatives. RF classification does not result in any
improvement in overall accuracy but it still maintains the
accuracy of the best in vitro assay with the additional bene-
fit of lower number of false positives. In terms of genotox-
icity assays, false negatives most likely include non-geno-
toxic carcinogens.[50] Thus, improved sensitivity is probably
an indication of higher rate of identification of non-geno-
toxic carcinogens using genotoxicity assays.

The results of the RF classification also illustrate that: (i)
the threshold parameter in the model (number of trees in
the random forest) can be changed to adjust the desired
trade-off between false positives and false negatives. How-
ever, if any in vitro assay were to be used independently,
there is no reference or protocol to change the threshold
for each new chemical, and (ii) the choice of number of
trees in RF implementation creates only minor variation in
the classifier performance which demonstrates the robust-
ness and consistency in performance of RF algorithm for
developing classification models. The results demonstrate
how RF classification results based on combination of in

vitro genotoxicity assays can improve the identification of
true carcinogens. Further analysis can also be done to iden-
tify the most important assays to assist in the design and
selection of an in vitro battery of genotoxicity tests for im-
proved carcinogenicity prediction.

4 Conclusions

The availability of high throughput in vitro assay data
offers a unique opportunity of deriving knowledge about
a chemical’s mechanism of toxic action. Mechanistically rel-
evant in vitro assays can be used as a powerful tool for
identification of biomarkers of chemical toxicity and uncov-
er novel biochemical pathways underlying complex toxic
endpoints. We proposed the use of specific in vitro assays
data in identification of relevant biological descriptors and
development of QBAR models for carcinogenicity predic-
tion. The main objective of the approach described in this
paper is to demonstrate a strategy for development of
quantitative biological activity relationships with carcinoge-
nicity as an example endpoint.

We have presented two case studies supported by
theory to highlight similarities between QBAR and QSAR
modeling techniques. Case studies in Section 3.1 and 3.2
demonstrate an analogy between QSAR and QBAR model-
ing in: (i) the selection of relevant descriptors to be used in
different machine learning algorithm, and (ii) the develop-
ment of a computational model which maps chemical/bio-
logical descriptors to a toxic endpoint, respectively. Both
the case studies show increased sensitivity or lower rates of

Figure 3. ROC plot of in vitro data based RF classification and in vitro genotoxicity assays.
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false negatives, which is desirable for regulatory purposes
and are corroborated with theoretical knowledge to ad-
dress the OECD concerns as well. Our case studies demon-
strate that in vitro data can be sufficiently used to develop
QBAR models for carcinogenicity prediction. Such mecha-
nism based models can be used along with QSAR models
for mechanistically complex toxic endpoints to successfully
advance the development of toxicology and risk assess-
ment studies.
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