
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 2, lecture 1,
Modeling with UML

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview: modeling with UML

♦ What is modeling?
♦ What is UML?
♦ Use case diagrams
♦ Class diagrams
♦ Sequence diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

What is modeling?

♦ Modeling consists of building an abstraction of reality.
♦ Abstractions are simplifications because:

! They ignore irrelevant details and
! They only represent the relevant details.

♦ What is relevant or irrelevant depends on the purpose of the
model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Example: street map

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Why model software?

Why model software?

♦ Software is getting increasingly more complex
! Windows XP > 40 mio lines of code
! A single programmer cannot manage this amount of code in its

entirety.

♦ Code is not easily understandable by developers who did not
write it

♦ We need simpler representations for complex systems
! Modeling is a mean for dealing with complexity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Systems, Models and Views

♦ A model is an abstraction describing a subset of a system
♦ A view depicts selected aspects of a model
♦ A notation is a set of graphical or textual rules for depicting views
♦ Views and models of a single system may overlap each other

Examples:
♦ System: Aircraft
♦ Models: Flight simulator, scale model
♦ Views: All blueprints, electrical wiring, fuel system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Systems, Models and Views

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft

Flightsimulator

Scale Model

Blueprints

Electrical
Wiring

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Models, Views and Systems (UML)

System Model View
**

Depicted byDescribed by

Airplane: System

Blueprints: View Fuel System: View Electrical Wiring: View

Scale Model: Model Flight Simulator: Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Concepts and Phenomena

Phenomenon
! An object in the world of a domain as you perceive it
! Example: The lecture you are attending
! Example: My black watch

Concept
! Describes the properties of phenomena that are common.
! Example: Lectures on software engineering
! Example: Black watches

Concept is a 3-tuple:
! Name (To distinguish it from other concepts)
! Purpose (Properties that determine if a phenomenon is a member of

a concept)
! Members (The set of phenomena which are part of the concept)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

♦ Abstraction
! Classification of phenomena into concepts

♦ Modeling
! Development of abstractions to answer specific questions about a set of

phenomena while ignoring irrelevant details.

MembersName

Clock

Purpose

A device that
measures time.

Concepts and phenomena

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Concepts in software: Type and Instance

♦ Type:
! An abstraction in the context of programming languages
! Name: int, Purpose: integral number, Members: 0, -1, 1, 2, -2, . . .

♦ Instance:
! Member of a specific type

♦ The type of a variable represents all possible instances the
variable can take

The following relationships are similar:
! �type� <�> �instance�
! �concept� <�> �phenomenon�

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Abstract Data Types & Classes

♦ Abstract data type
! Special type whose implementation is hidden

from the rest of the system.
♦ Class:

! An abstraction in the context of object-
oriented languages

♦ Like an abstract data type, a class
encapsulates both state (variables) and
behavior (methods)
! Class Vector

♦ Unlike abstract data types, classes can be
defined in terms of other classes using
inheritance

Watch

time
date

CalculatorWatch

SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Application and Solution Domain

♦ Application Domain (Requirements Analysis):
! The environment in which the system is operating

♦ Solution Domain (System Design, Object Design):
! The available technologies to build the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Object-oriented modeling

Application Domain Solution Domain
Application Domain Model System Model

Aircraft
TrafficController

FlightPlan Airport

MapDisplay

FlightPlanDatabase

Sum maryDisplay

TrafficControl

TrafficControl

UML Package

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

What is UML?

♦ UML (Unified Modeling Language)
! An emerging standard for modeling object-oriented software.
! Resulted from the convergence of notations from three leading

object-oriented methods:
" OMT (James Rumbaugh)
" OOSE (Ivar Jacobson)
" Booch (Grady Booch)

♦ Reference: �The Unified Modeling Language User Guide�,
Addison Wesley, 1999.

♦ Supported by several CASE tools
! Rational ROSE
! TogetherJ

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

UML: First Pass

♦ You can model 80% of most problems by using about 20 %
UML

♦ We teach you those 20%

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

UML First Pass

♦ Use case Diagrams
! Describe the functional behavior of the system as seen by the user.

♦ Class diagrams
! Describe the static structure of the system: Objects, Attributes,

Associations
♦ Sequence diagrams

! Describe the dynamic behavior between actors and the system and
between objects of the system

♦ Statechart diagrams
! Describe the dynamic behavior of an individual object (essentially a

finite state automaton)
♦ Activity Diagrams

! Model the dynamic behavior of a system, in particular the workflow
(essentially a flowchart)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

UML first pass: Use case diagrams

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use casePackage
Watch

Use case diagrams represent the functionality of the system
from user�s point of view

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

UML first pass: Class diagrams

1

2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
load

1

2

1

Time
now

1

Watch

Class
Association

Multiplicity

Attribute Operations

Class diagrams represent the structure of the system

state

PushButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

UML first pass: Sequence diagram

:LCDDisplay

blinkHours()

blinkMinutes()

refresh()

com mitNewTime()

:Time

incrementMinutes()

stopBlinking()

:Watch

pressButton1()

pressButton2()

pressButtons1And2()

pressButton1()

:WatchUser

Object

Message

Activation

Sequence diagrams represent the behavior as interactions

Actor

Lifeline

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

UML first pass: Statechart diagrams for objects
with interesting dynamic behavior

BlinkHours

BlinkMinutes

IncrementHrs

IncrementMin.

BlinkSeconds IncrementSec.

StopBlinking

[button1&2Pressed]

[button1Pressed]

[button2Pressed]

[button2Pressed]

[button2Pressed]

[button1Pressed]

[button1&2Pressed]

[button1&2Pressed]

State
Initial state

Final state

Transition

Event

Represent behavior as states and transitions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

UML Summary

♦ UML provides a wide variety of notations for representing
many aspects of software development
! Powerful, but complex language
! Can be misused to generate unreadable models
! Can be misunderstood when using too many exotic features

♦ For now we concentrate on a few notations:
! Functional model: Use case diagram
! Object model: class diagram
! Dynamic model: sequence diagrams, statechart and activity

diagrams

