ineering

Object-Oriented Software Eng

Using UML, Patterns, and Java

Chapter 2 le_cture 1,

Overview: modeling with UML

+ What 1s modeling?
+ What 1s UML?
¢ Use case diagrams
¢ Class diagrams

¢ Sequence diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Eng

ineering: Using UML, Patterns, and Java

What is modeling?

+ Modeling consists of building an abstraction of reality.

+ Abstractions are simplifications because:
¢ They ignore irrelevant details and
¢ They only represent the relevant details.

¢ What is relevant or irrelevant depends on the purpose of the
model.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Example: street map

RN R e gy LA TSI B DR
T W ﬂ'l%a{'ﬁ i}h@‘ﬁt e

T \ . h
fe iUnive Rl
Jecopische dniversitiian,
P :

s

ngitﬁEﬂ% ,

Ty _
:-:: S ':.?:r-\. _,E; ~ ":_ _
- ‘hghﬁf'ﬂrﬁ_.#,_ A e

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

Why model software?

Why model software?

¢ Software 1s getting increasingly more complex
* Windows XP > 40 mio lines of code

+ A single programmer cannot manage this amount of code in its
entirety.

¢ Code is not easily understandable by developers who did not
write 1t
+ We need simpler representations for complex systems
¢+ Modeling is a mean for dealing with complexity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Systems, Models and Views

¢ A model 1s an abstraction describing a subset of a system

o A view depicts selected aspects of a model

¢ A notation is a set of graphical or textual rules for depicting views
+ Views and models of a single system may overlap each other

Examples:

¢ System: Aircraft

¢ Models: Flight simulator, scale model

¢ Views: All blueprints, electrical wiring, fuel system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Systems, Models and Views

Flightsimulator

Electrical
Wiring

Scale Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Models, Views and Systems (UML)

System

Described

Model

Mew

by

Depi cted by

Arpgane: System

Sca e Model: Modd

Hight § nmul ator: Modd

ueprins:. Mew

Fud System \Mew

Hectricd Wring Mew

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Concepts and Phenomena

Phenomenon
¢ An object in the world of a domain as you perceive it
¢ Example: The lecture you are attending
¢ Example: My black watch

Concept
¢ Describes the properties of phenomena that are common.
¢ Example: Lectures on software engineering
¢ Example: Black watches

Concept 1s a 3-tuple:
¢+ Name (To distinguish it from other concepts)

¢ Purpose (Properties that determine if a phenomenon is a member of
a concept)

¢+ Members (The set of phenomena which are part of the concept)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Concepts and phenomena

Name Purpose Members

d ock A devicet hat

measur es time.

¢ Abstraction
¢ Classification of phenomena into concepts
¢ Modeling

+ Development of abstractions to answer specific questions about a set of
phenomena while ignoring irrelevant details.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Concepts in software: Type and Instance

o Type:
¢ An abstraction in the context of programming languages

¢ Name: int, Purpose: integral number, Members: O, -1, 1 2 -2 ...

+ Instance:
¢+ Member of a specific type

+ The type of a variable represents all possible instances the
variable can take

The following relationships are similar:
* “type” <— “instance”

¢ “concept” <—> “phenomenon”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Abstract Data Types & Classes

¢ Abstract data type

+ Special type whose implementation is hidden WAt ch
from the rest of the system.
¢ Class: e

¢ An abstraction in the context of object-

oriented languages Set Dat e(d)
+ Like an abstract data type, a class JAN
encapsulates both state (variables) and
behavior (methods)
+ Class Vector Cal cul at or Wat ch

+ Unlike abstract data types, classes can be cal cul ator State

defined 1n terms of other classes using Ent er Cal chbde()
inheritance | nput Nurtber (n)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Application and Solution Domain

¢ Application Domain (Requirements Analysis):

¢ The environment in which the system is operating

¢ Solution Domain (System Design, Object Design):

+ The available technologies to build the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Object-oriented modeling

=T

\

Application Domain Solution Domain
Application Domain Model U M L Package System Model
Tr afficContrd SummaryD spl ay Map D splay
~
~
' N Hi ght A anDat abase
AT ordft TrafficContrdl er ~ _ g
Hi ght 7 an Arport _ TrafficContrd

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

What is UML?

¢+ UML (Unified Modeling Language)

+ An emerging standard for modeling object-oriented software.

¢ Resulted from the convergence of notations from three leading
object-oriented methods:

¢ OMT (James Rumbaugh)
¢+ OOSE (Ivar Jacobson)
¢ Booch (Grady Booch)

¢ Reference: “The Unified Modeling Language User Guide”,
Addison Wesley, 1999.

+ Supported by several CASE tools
+ Rational ROSE
¢ TogetherJ

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

15

UML: First Pass

¢ You can model 80% of most problems by using about 20 %
UML

+ We teach you those 20%

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java

16

UML First Pass

¢ Use case Diagrams
¢ Describe the functional behavior of the system as seen by the user.

¢ Class diagrams

* Describe the static structure of the system: Objects, Attributes,
Associations

¢ Sequence diagrams

¢ Describe the dynamic behavior between actors and the system and
between objects of the system

+ Statechart diagrams

* Describe the dynamic behavior of an individual object (essentially a
finite state automaton)

¢ Activity Diagrams

¢+ Model the dynamic behavior of a system, in particular the workflow
(essentially a flowchart)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

UML first pass: Use case diagrams

Package

Wat ch \

Use case]

ReadTi me

&

Wat chUser

_

—C_ D

Set Ti e

C_ >

Wpair%rson

ChangeBattery

Use case diagrams represent the functionality of the system
from user’s point of view

Bernd Bruegge & Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

UML first pass: Class diagrams

Class diagrams represent the structure of the system

Association

Ti me

now

Multiplicity Wat ch
1 1 1
2 10 | 2
PushButton LCDD sp ay Battery
state i nkl dx | oad
push() bli nkSeconds()
rdease) \ bli nk M nut es()

Attr@ Operations

Bernd Bruegge & Allen H. Dutoit

bli nk Hour s()
st opHi nki ng()
referesh()

Object-Oriented Software Engine

ering: Using UML, Patterns, and Java

19

UML first pass: Sequence diagram

g L

Watchlser

@Iessage

Watch : LCDO spl ay ~dne

|_pressButtonl()

| essutonn

| pressButton2()

pressButtonsl

Activation

2

. "]
i T

rincrement Mnutes(py,

| |::|< refresh()

—commt NewTi me(y,

i

gl

T
I

Lifeline

Sequence diagrams represent the behavior as interactions

Bernd Bruegge &

Allen H. Dutoit

Object-Oriented Software Engineering: Using UML, Patterns, and Java

20

UML first pass: Statechart diagrams for objects
with interesting dynamic behavior

State
I{nltlal sta@

St t on182Pr essed] [buttonzPr essed]}(
| ncrenent Hr's

\BI i nkHours

o’y [buttonlPr d]
%Transmoa RSt
/

[butt on1&2Pr essed] f \ [but t on2Pr eSSQd])(
\Bli nkM nut esj< | ncrement M n.

[butt onlPressed]

[byt t onl&2Pr essed] \ [butt on2Pr essed] r

- >
l/ Bl i nkSecondsj(ch ement Sec)

GopBl i nki n%@zlnal Statej

Represent behavior as states and transitions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patter

UML Summary

+ UML provides a wide variety of notations for representing
many aspects of software development

¢ Powerful, but complex language
¢ Can be misused to generate unreadable models

¢ Can be misunderstood when using too many exotic features

+ For now we concentrate on a few notations:
¢ Functional model: Use case diagram
¢ Object model: class diagram

¢+ Dynamic model: sequence diagrams, statechart and activity
diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

