
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 2, lecture 2
Modeling with UML

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview: More detail on modeling with UML

♦ Use case diagrams
♦ Class diagrams
♦ Sequence diagrams
♦ Activity diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Other UML Notations

UML provide other notations that we will be introduced in
subsequent lectures, as needed.

♦ Implementation diagrams
Component diagrams
Deployment diagrams
Introduced in lecture on System Design

♦ Object constraint language
Introduced in lecture on Object Design

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

UML Core Conventions

♦ Rectangles are classes or instances
♦ Ovals are functions or use cases
♦ Instances are denoted with an underlined names

my Watch:SimpleWatch

Joe:Firefighter

♦ Types are denoted with non underlined names
SimpleWatch

Firefighter

♦ Diagrams are graphs
Nodes are entities
Arcs are relationships between entities

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Use Case Diagrams

♦ Used during requirements
elicitation to represent external
behavior

♦ Actors represent roles, that is, a
type of user of the system

♦ Use cases represent a sequence of
interaction for a type of
functionality

♦ The use case model is the set of
all use cases. It is a complete
description of the functionality of
the system and its environment

Passenger

PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Actors

♦ An actor models an external entity which
communicates with the system:

User
External system
Physical environment

♦ An actor has a unique name and an optional
description.

♦ Examples:
Passenger: A person in the train
GPS satellite: Provides the system with GPS
coordinates

Passenger

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Use Case

A use case represents a class of
functionality provided by the system as
an event flow.

A use case consists of:
♦ Unique name
♦ Participating actors
♦ Entry conditions
♦ Flow of events
♦ Exit conditions
♦ Special requirements

PurchaseTicket

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Use Case Diagram: Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:
♦ Passenger standing in front of

ticket distributor.
♦ Passengerhas sufficient money

to purchase ticket.

Exit condition:
♦ Passengerhas ticket.

Event flow:
1. Passengerselects the number of

zones to be traveled.
2. �Distributor displays the amount

due.
3. Passenger inserts money, of at

least the amount due.
4. Distributor returns change.
5. Distributor issues ticket.

Anything missing?

Exceptional cases!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

The <<extends>> Relationship
♦ <<extends>> relationships

represent exceptional or seldom
invoked cases.

♦ The exceptional event flows are
factored out of the main event flow
for clarity.

♦ Use cases representing exceptional
flows can extend more than one
use case.

♦ The direction of a <<extends>>
relationship is to the extended use
case

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

The <<includes>> Relationship

♦ <<includes>> relationship
represents behavior that is factored
out of the use case.

♦ <<includes>> behavior is factored
out for reuse, not because it is an
exception.

♦ The direction of a <<includes>>
relationship is to the using use case
(unlike <<extends>>
relationships).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extends>>

Cancel

<<extends>>

<<includes>>

CollectMoney

<<includes>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Use Case Diagrams: Summary

♦ Use case diagrams represent external behavior
♦ Use case diagrams are useful as an index into the use cases
♦ Use case descriptions provide meat of model, not the use case

diagrams.
♦ All use cases need to be described for the model to be useful.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Class Diagrams

♦ Class diagrams represent the structure of the system.
♦ Used

during requirements analysis to model problem domain concepts
during system design to model subsystems and interfaces
during object design to model classes.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* *
Trip

zone:Zone
Price: Price

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Classes

♦ A class represent a concept
♦ A class encapsulates state (attributes) and behavior (operations).
♦ Each attribute has a type.
♦ Each operation has a signature.
♦ The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TarifSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

Name

Attributes

Operations

Signature

TarifSchedule

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Instances

♦ An instance represents a phenomenon.
♦ The name of an instance is underlined and can contain the class of the

instance.
♦ The attributes are represented with their values.

zone2price = {
{‘1’, .20},
{‘2’, .40},
{‘3’, .60}}

tarif_1974:TarifSchedule

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Actor vs Instances

♦ What is the difference between an actor , a class and an
instance?

♦ Actor:
An entity outside the system to be modeled, interacting with the
system (“Passenger”)

♦ Class:
An abstraction modeling an entity in the problem domain, must be
modeled inside the system (“User”)

♦ Object:
A specific instance of a class (“Joe, the passenger who is purchasing
a ticket from the ticket distributor”).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Price
Zone

Associations

♦ Associations denote relationships between classes.
♦ The multiplicity of an association end denotes how many objects the source

object can legitimately reference.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule TripLeg

* *

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

1-to-1 and 1-to-many Associations

Country

name:String

City

name:String

Has-capital

Polygon

draw()

Point

x: Integer

y: Integer

One-to-one association

One-to-many association

*

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Many-to-Many Associations

StockExchange Company

tickerSymbol

Lists
**

StockExchange CompanyLists 1*
tickerSymbol SX_ID

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

From Problem Statement To Object Model

Problem Statement: A stock exchange lists many companies. Each
company is uniquely identified by a ticker symbol

Class Diagram:

StockExchange Company

tickerSymbol
Lists

**

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

From Problem Statement to Code

public class StockExchange
{
private Vector m_Company = new Vector();
};

public class Company
{
public int m_tickerSymbol;
private Vector m_StockExchange = new Vector();
};

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker Symbol

Class Diagram:

Java Code

StockExchange Company

tickerSymbolLists
**

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Aggregation

♦ An aggregation is a special case of association denoting a “consists of”
hierarchy.

♦ The aggregate is the parent class, the components are the children class.

♦ A solid diamond denotes composition, a strong form of aggregation where
components cannot exist without the aggregate. (Bill of Material)

TicketMachine

ZoneButton
3

Exhaust system

Muffler

diameter

Tailpipe

diameter

1 0..2

Exhaust system

Muffler

diameter

Tailpipe

diameter

1 0..2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Qualifiers

♦ Qualifiers can be used to reduce the multiplicity of an
association.

Directory
File

filename

Without qualification
1 *

With qualification

Directory File
0…11

filename

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Inheritance

♦ The children classes inherit the attributes and operations of the
parent class.

♦ Inheritance simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Object Modeling in Practice: Class Identification

Foo

Betrag
CustomerId

Deposit()
Withdraw()
GetBalance()

Class Identification: Name of Class, Attributes and Methods

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Object Modeling in Practice:
Encourage Brainstorming

Foo

Betrag
CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Betrag
CustomerId

Deposit()
Withdraw()
GetBalance()

Naming is important!
Is Foo the right name?

“Dada”

Betrag
CustomerId

Deposit()
Withdraw()
GetBalance()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Object Modeling in Practice ctd

Account

Betrag

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

1) Find New Objects

CustomerIdAccountId

2) Iterate on Names, Attributes and Methods

Bank

Name

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Object Modeling in Practice: A Banking System

Account

Betrag

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

CustomerIdAccountI
d
AccountIdBank

Name

1) Find New Objects

2) Iterate on Names, Attributes and Methods

3) Find Associations between Objects

Has

4) Label the assocations
5) Determine the multiplicity of the assocations

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Practice Object Modeling: Iterate, Categorize!

Customer

Name

CustomerId()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountI
d
AccountId

Bank

Name Has**

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Packages

♦ A package is a UML mechanism for organizing elements into
groups (usually not an application domain concept)

♦ Packages are the basic grouping construct with which you may
organize UML models to increase their readability.

♦ A complex system can be decomposed into subsystems, where
each subsystem is modeled as a package

DispatcherInterface

Notification IncidentManagement

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

UML sequence diagrams

♦ Used during requirements analysis
To refine use case descriptions
to find additional objects
(“participating objects”)

♦ Used during system design
to refine subsystem interfaces

♦ Classes are represented by
columns

♦ Messages are represented by
arrows

♦ Activations are represented by
narrow rectangles

♦ Lifelines are represented by
dashed lines

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

Passenger
TicketMachine

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Nested messages

♦ The source of an arrow indicates the activation which sent the message
♦ An activation is as long as all nested activations
♦ Horizontal dashed arrows indicate data flow
♦ Vertical dashed lines indicate lifelines

selectZone()

Passenger
ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Iteration & condition

♦ Iteration is denoted by a * preceding the message name
♦ Condition is denoted by boolean expression in [] before the message

name

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0]returnChange(-owedA mount)

Iteration

Condition

…to be continued...

…continued from previous slide...

*

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Creation and destruction

♦ Creation is denoted by a message arrow pointing to the object.
♦ Destruction is denoted by an X mark at the end of the destruction activation.
♦ In garbage collection environments, destruction can be used to denote the

end of the useful life of an object.

Passenger
ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation

Destruction

print()

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Sequence Diagram Summary

♦ UML sequence diagram represent behavior in terms of
interactions.

♦ Useful to find missing objects.
♦ Time consuming to build but worth the investment.
♦ Complement the class diagrams (which represent structure).

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

State Chart Diagrams

BlinkHours

BlinkMinutes

IncrementHrs

IncrementMin.

BlinkSeconds IncrementSec.

StopBlinking

[button1&2Pressed]

[button1Pressed]

[button2Pressed]

[button2Pressed]

[button2Pressed]

[button1Pressed]

[button1&2Pressed]

[button1&2Pressed]

StateInitial state

Final state

Transition

Event

Represent behavior as states and transitions

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Activity Diagrams

♦ An activity diagram shows flow control within a system

♦ An activity diagram is a special case of a state chart diagram in
which states are activities (“functions”)

♦ Two types of states:
Action state:

Cannot be decomposed any further
Happens “instantaneously” with respect to the level of abstraction
used in the model

Activity state:
Can be decomposed further
The activity is modeled by another activity diagram

Handle
Incident

Document
Incident

Archive
Incident

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Statechart Diagram vs. Activity Diagram

Handle
Incident

Document
Incident

Archive
Incident

Active Inactive Closed Archived

Incident-
Handled

Incident-
Documented

Incident-
Archived

Statechart Diagram for Incident (similar to Mealy Automaton)
(State: Attribute or Collection of Attributes of object of type Incident)

Activity Diagram for Incident (similar to Moore
(State: Operation or Collection of Operations)

Triggerless
TransitionCompletion of activity

causes state transition

Event causes
State transition

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Activity Diagram: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Activity Diagrams: Modeling Concurrency

♦ Synchronization of multiple activities
♦ Splitting the flow of control into multiple threads

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

SynchronizationSplitting

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Activity Diagrams: Swimlanes

♦ Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

What should be done first? Coding or Modeling?

♦ It all depends….

♦ Forward Engineering:
Creation of code from a model
Greenfield projects

♦ Reverse Engineering:
Creation of a model from code
Interface or reengineering projects

♦ Roundtrip Engineering:
Move constantly between forward and reverse engineering
Useful when requirements, technology and schedule are changing
frequently

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

UML Summary

♦ UML provides a wide variety of notations for representing
many aspects of software development

Powerful, but complex language
Can be misused to generate unreadable models
Can be misunderstood when using too many exotic features

♦ For now we concentrate on a few notations:
Functional model: Use case diagram
Object model: class diagram
Dynamic model: sequence diagrams, statechart and activity
diagrams

