
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 4, Requirements
Elicitation, examples

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Example: Selection of Software Lifecycle Activities
for a specific project

System
Design

Object
Design

Implemen-
tation TestingRequirements

Elicitation Analysis

The Hacker knows only one activitity

Implemen-
tation

Activities used this lecture

Each activity produces one or more models

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Defining the System Boundary is Often Difficult

What do you see here?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

ARENA: The Problem
♦ The Internet has enabled virtual communities

Groups of people sharing common of interests but who have never met each
other in person. Such virtual communities can be short lived (e.g people in a
chat room or playing a multi player game) or long lived (e.g., subscribers to a
mailing list).

♦ Many multi-player computer games now include support for virtual
communities.

Players can receive news about game upgrades, new game levels, announce
and organize matches, and compare scores.

♦ Currently each game company develops such community support in each
individual game.

Each company uses a different infrastructure, different concepts, and
provides different levels of support.

♦ This redundancy and inconsistency leads to problems:
High learning curve for players joining a new community,
Game companies need to develop the support from scratch
Advertisers need to contact each individual community separately.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

ARENA: The Objectives

♦ Provide a generic infrastructure for operating an arena to
Support virtual game communities.
Register new games
Register new players
Organize tournaments
Keeping track of the players scores.

♦ Provide a framework for tournament organizers
to customize the number and sequence of matchers and the
accumulation of expert rating points.

♦ Provide a framework for game developers
for developing new games, or for adapting existing games into the
ARENA framework.

♦ Provide an infrastructure for advertisers.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Example: Accident Management System

♦ What needs to be done to report a “Cat in a Tree” incident?
♦ What do you need to do if a person reports “Warehouse on

Fire?”
♦ Who is involved in reporting an incident?
♦ What does the system do, if no police cars are available? If the

police car has an accident on the way to the “cat in a tree”
incident?

♦ What do you need to do if the “Cat in the Tree” turns into a
“Grandma has fallen from the Ladder”?

♦ Can the system cope with a simultaneous incident report
“Warehouse on Fire?”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Scenario Example: Warehouse on Fire

♦ Bob, driving down main street in his patrol car notices smoke coming out of
a warehouse. His partner, Alice, reports the emergency from her car.

♦ Alice enters the address of the building, a brief description of its location
(i.e., north west corner), and an emergency level. In addition to a fire unit,
she requests several paramedic units on the scene given that area appear to
be relatively busy. She confirms her input and waits for an
acknowledgment.

♦ John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic units to
the Incident site and sends their estimated arrival time (ETA) to Alice.

♦ Alice received the acknowledgment and the ETA.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Observations about Warehouse on Fire Scenario

♦ Concrete scenario
Describes a single instance of reporting a fire incident.
Does not describe all possible situations in which a fire
can be reported.

♦ Participating actors
Bob, Alice and John

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Next goal, after the scenarios are formulated:

♦ Find all the use cases in the scenario that specifies all possible
instances of how to report a fire

Example: “Report Emergency “ in the first paragraph of the
scenario is a candidate for a use case

♦ Describe each of these use cases in more detail
Participating actors
Describe the Entry Condition
Describe the Flow of Events
Describe the Exit Condition
Describe Exceptions
Describe Special Requirements (Constraints, Nonfunctional
Requirements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

ReportEmergency

Use Cases

♦ A use case is a flow of events in the system, including interaction with
actors

♦ It is initiated by an actor
♦ Each use case has a name
♦ Each use case has a termination condition
♦ Graphical Notation: An oval with the name of the use case

Use Case Model: The set of all use cases specifying the
complete functionality of the system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Example: Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Heuristics: How do I find use cases?

♦ Select a narrow vertical slice of the system (i.e. one scenario)
Discuss it in detail with the user to understand the user’s preferred
style of interaction

♦ Select a horizontal slice (i.e. many scenarios) to define the
scope of the system.

Discuss the scope with the user

♦ Use illustrative prototypes (mock-ups) as visual support
♦ Find out what the user does

Task observation (Good)
Questionnaires (Bad)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Use Case Example: ReportEmergency

♦ Use case name: ReportEmergency
♦ Participating Actors:

Field Officer (Bob and Alice in the Scenario)
Dispatcher (John in the Scenario)

♦ Exceptions:
The FieldOfficer is notified immediately if the connection between
her terminal and the central is lost.
The Dispatcher is notified immediately if the connection between
any logged in FieldOfficer and the central is lost.

♦ Flow of Events: on next slide.
♦ Special Requirements:

The FieldOfficer’s report is acknowledged within 30 seconds. The
selected response arrives no later than 30 seconds after it is sent by
the Dispatcher.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Use Case Example: ReportEmergency
Flow of Events
♦ The FieldOfficer activates the “Report Emergency” function of her

terminal. FRIEND responds by presenting a form to the officer.

♦ The FieldOfficer fills the form, by selecting the emergency level, type,
location, and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. Once the form is
completed, the FieldOfficer submits the form, at which point, the
Dispatcher is notified.

♦ The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenIncident use case. The Dispatcher selects
a response and acknowledges the emergency report.

♦ The FieldOfficer receives the acknowledgment and the selected response.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Another Use Case Example: Allocate a Resource

♦ Actors:
Field Supervisor: This is the official at the emergency site....

Resource Allocator: The Resource Allocator is responsible for the
commitment and decommitment of the Resources managed by the
FRIEND system. ...

Dispatcher: A Dispatcher enters, updates, and removes Emergency
Incidents, Actions, and Requests in the system. The Dispatcher also
closes Emergency Incidents.

Field Officer: Reports accidents from the Field

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Another Use Case Example: Allocate a Resource
♦ Use case name: AllocateResources
♦ Participating Actors:

Field Officer (Bob and Alice in the Scenario)
Dispatcher (John in the Scenario)
Resource Allocator
Field Supervisor

♦ Entry Condition
The Resource Allocator has selected an available resource.
The resource is currently not allocated

♦ Flow of Events
The Resource Allocator selects an Emergency Incident.
The Resource is committed to the Emergency Incident.

♦ Exit Condition
The use case terminates when the resource is committed.
The selected Resource is now unavailable to any other Emergency Incidents
or Resource Requests.

♦ Special Requirements
The Field Supervisor is responsible for managing the Resources

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Use Case Associations

♦ A use case model consists of use cases and use case
associations

A use case association is a relationship between use cases

♦ Important types of use case associations: Include, Extends,
Generalization

♦ Include
A use case uses another use case (“functional decomposition”)

♦ Extends
A use case extends another use case

♦ Generalization
An abstract use case has different specializations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

<<Include>>: Functional Decomposition

♦ Problem:
A function in the original problem statement is too complex to be
solvable immediately

♦ Solution:
Describe the function as the aggregation of a set of simpler
functions. The associated use case is decomposed into smaller use
cases

ManageIncident

CreateIncident HandleIncident CloseIncident

<<include>>

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

<<Include>>: Reuse of Existing Functionality
♦ Problem:

There are already existing functions. How can we reuse them?
♦ Solution:

The include association from a use case A to a use case B indicates
that an instance of the use case A performs all the behavior
described in the use case B (“A delegates to B”)

♦ Example:
The use case “ViewMap” describes behavior that can be used by
the use case “OpenIncident” (“ViewMap” is factored out)

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

Note: The base case cannot exist alone. It is always called with the
supplier use case

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

<Extend>> Association for Use Cases
♦ Problem:

The functionality in the original problem statement needs to be
extended.

♦ Solution:
An extend association from a use case A to a use case B indicates
that use case B is an extension of use case A.

♦ Example:
The use case “ReportEmergency” is complete by itself , but can
be extended by the use case “Help” for a specific scenario in
which the user requires help

ReportEmergency

FieldOfficerf
Help

<<extend>>

Note: The base use case can be executed without the use case extension
in extend associations.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Generalization association in use cases
♦ Problem:

You have common behavior among use cases and want to factor this out.
♦ Solution:

The generalization association among use cases factors out common
behavior. The child use cases inherit the behavior and meaning of the
parent use case and add or override some behavior.

♦ Example:
Consider the use case “ValidateUser”, responsible for verifying the identity
of the user. The customer might require two realizations: “CheckPassword”
and “CheckFingerprint”

ValidateUser

CheckPassword

CheckFingerprint

Parent
Case Child

Use Case

