
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 5, Object
Modeling

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline

♦ From use cases to class diagrams
♦ Model and reality
♦ Activities during object modeling
♦ Object identification
♦ Object types

! entity, boundary and control objects

♦ Object naming
♦ Abbott’s technique helps in object identification
♦ Users of class diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

From Use Cases to Objects

Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3 Level 3

Level 4 Level 4

Level 3

A B

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

Level 2

Level 1

Level 2

Level 3 Level 3

Level 4 Level 4

Level 3

A B

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Reality and Model

♦ Reality R: Real Things, People, Processes happening
during some time, Relationship between things

♦ Model M: Abstractions from (really existing or only
thought of) things, people , processes and relationships
between these abstractions.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Why models?

♦ We use models
! To abstract away from details in the reality, so we can draw

complicated conclusions in the reality with simple steps in the
model

! To get insights into the past or presence
! To make predictions about the future

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

What is a “good” model?
♦ Relationships, which are valid in reality R, are also valid in model M.

! I : Mapping of real things in reality R to abstractions in the model M abbildet
(Interpretation)

! fM: relationship between abstractions in M
! fR: relationship between real things inR

♦ In a good model the following diagram is commutative:

fM

fR

MM

R R
I I

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Models are falsifiable

♦ In the middle age people believed in truth
♦ Models of reality cannot be true
♦ A model is always an approximation

! We must say “according to our knowledge”, or “with today’s
knowledge”

♦ Popper (“Objective Knowledge):
! We can only build models from reality, which are “true” until, we

have found a counter example (Principle of Falsification)
" And even then we might stick with the model (“because it works quite

well in most settings”)

♦ The falsification principle is the basis of software development
! The goal of prototypes, reviews and system testing is to falsify the

software system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Models of models of models...

♦ Modeling is relative. We can think of a model as reality and
can build another model from it (with additional
abstractions).

fM1

fR

M1M1

R R

Requirements
Elicitation I1

M2M2

Analysis I2

fM2

….
The development of

Software-Systemes is a
Transformation of

Models:
Analysis, Design,

Implementation,Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Activities during Object Modeling

♦ Main goal: Find the important abstractions
♦ What happens if we find the wrong abstractions?

! Iterate and correct the model
♦ Steps during object modeling

! 1. Class identification
" Based on the fundamental assumption that we can find abstractions

! 2. Find the attributes
! 3. Find the methods
! 4. Find the associations between classes

♦ Order of steps
! Goal: get the desired abstractions
! Order of steps secondary, only a heuristic
! Iteration is important

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Class Identification

♦ Identify the boundaries of the system
♦ Identify the important entities in the system
♦ Class identification is crucial to object-oriented modeling
♦ Basic assumption:

! 1. We can find the classes for a new software system (Forward
Engineering)

! 2. We can identify the classes in an existing system (Reverse
Engineering)

♦ Why can we do this?
! Philosophy, science, experimental evidence

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Class identification is an ancient problem

♦ Objects are not just found by taking a picture of a scene or
domain

♦ The application domain has to be analyzed.
♦ Depending on the purpose of the system different objects might

be found
! How can we identify the purpose of a system?
! Scenarios and use cases

♦ Another important problem: Define system boundary.
! What object is inside, what object is outside?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Pieces of an Object Model
♦ Classes
♦ Associations (Relations)

! Generic associations
! Canonical associations

" Part of- Hierarchy (Aggregation)
" Kind of-Hierarchy (Generalization)

♦ Attributes
! Detection of attributes
! Application specific
! Attributes in one system can be classes in another system
! Turning attributes to classes

♦ Operations
! Detection of operations
! Generic operations: Get/Set, General world knowledge, design patterns
! Domain operations: Dynamic model, Functional model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Object vs Class

♦ Object (instance): Exactly one thing
! This lecture on Software Engineering

♦ A class describes a group of objects with similar properties
! Game, Tournament, mechanic, car, database

♦ Object diagram: A graphic notation for modeling objects, classes
and their relationships ("associations"):
! Class diagram: Template for describing many instances of data. Useful for

taxonomies, patters, schemata...
! Instance diagram: A particular set of objects relating to each other. Useful

for discussing scenarios, test cases and examples

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Class identification

♦ Finding objects is the central piece in object modeling
♦ Approaches

! Application domain approach (not a special lecture, examples):
" Ask application domain expert to identify relevant abstractions

! Syntactic approach (today):
" Start with use cases. Extract participating objects from flow of events
" Use noun-verb analysis (Abbot’s technique) to identify components of

the object model
! Design patterns approach (Lecture on design patterns)

" Use reusable design patterns
! Component-based approach (Lecture on object design):

" Identify existing solution classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

How do you find classes?

♦ Finding objects is the central piece in object modeling
! Learn about problem domain: Observe your client
! Apply general world knowledge and intuition
! Take the flow of events and find participating objects in use cases
! Try to establish a taxonomy
! Do a syntactic analysis of problem statement, scenario or flow of

events
! Abbott Textual Analysis, 1983, also called noun-verb analysis

" Nouns are good candidates for classes
" Verbs are good candidates for opeations

! Apply design knowledge:
" Distinguish different types of objects
" Apply design patterns (Lecture on design patterns)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

How do you find classes?

♦ Finding objects is the central piece in object modeling
! Learn about problem domain: Observe your client
! Apply general world knowledge and intuition
! Take the flow of events and find participating objects in use cases
! Try to establish a taxonomy
! Apply design knowledge:

" Distinguish different types of objects
" Apply design patterns (Lecture on design patterns)

! Do a syntactic analysis of problem statement, scenario or flow of
events

! Abbott Textual Analysis, 1983, also called noun-verb analysis
" Nouns are good candidates for classes
" Verbs are good candidates for opeations

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Finding Participating Objects in Use Cases

♦ Pick a use case and look at its flow of events
! Find terms that developers or users need to clarify in order to

understand the flow of events
! Look for recurring nouns (e.g., Incident),
! Identify real world entities that the system needs to keep track of

(e.g., FieldOfficer, Dispatcher, Resource),
! Identify real world procedures that the system needs to keep track

of (e.g., EmergencyOperationsPlan),
! Identify data sources or sinks (e.g., Printer)
! Identify interface artifacts (e.g., PoliceStation)

♦ Be prepared that some objects are still missing and need to be
found:

" Model the flow of events with a sequence diagram

♦ Always use the user’s terms

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Object Types
♦ Entity Objects

! Represent the persistent information tracked by the system
(Application domain objects, “Business objects”)

♦ Boundary Objects
! Represent the interaction between the user and the system

♦ Control Objects:
! Represent the control tasks performed by the system

♦ Having three types of objects leads to models that are more
resilient to change.
! The interface of a system changes more likely than the control
! The control of the system change more likely than the application

domain
♦ Object types originated in Smalltalk:

! Model, View, Controller (MVC)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Example: 2BWatch Objects

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Objects Interface Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Naming of Object Types in UML

♦ UML provides several mechanisms to extend the language
♦ UML provides the stereotype mechanism to present new modeling elements

<<Entity>>
Year

<<Entitity>>
Month

<<Entity>>
Day

<<Control>>
ChangeDate

<<Boundary>>
Button

<<Boundary>>
LCDDisplay

Entity Objects Control Objects Boundary Objects

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Recommended Naming Convention for Object Types

♦ To distinguish the different object tpyes on a syntactical basis, we
recommend suffixes:

♦ Objects ending with the “_Boundary” suffix are boundary objects
♦ Objects ending with the “_Control” suffix are control objects

♦ Entity objects do not have any suffix appended to their name.

Year

Month

Day

ChangeDate_
Control

Button_Boundary

LCDDisplay_Boundary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Example: Flow of events

♦ The customer enters a store with the intention of buying a toy
for his child with the age of n.

♦ Help must be available within less than one minute.
♦ The store owner gives advice to the customer. The advice

depends on the age range of the child and the attributes of the
toy.

♦ The customer selects a dangerous toy which is kind of
unsuitable for the child.

♦ The store owner recommends a more yellow doll.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Mapping parts of speech to object model components
[Abbott, 1983]

Part of speech Model component Example

Proper noun object Jim Smith

Improper noun class Toy, doll

Doing verb method Buy, recommend

being verb inheritance is-a (kind-of)

having verb aggregation has an

modal verb constraint must be

adjective attribute 3 years old

transitive verb method enter

intransitive verb method (event) depends on

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Another Example

♦ The customer enters the store to buy a
toy.

♦ It has to be a toy that his daughter likes
and it must cost less than $50.

♦ He tries a videogame, which uses a data
glove and a head-mounted display. He likes
it.

An assistant helps him.
The suitability of the game depends on
the age of the child.
His daughter is only 3 years old.
The assistant recommends another type
of toy, namely the boardgame Monopoly".

Flow of events:

Is this a good use
Case?

“Monopoly” is probably a
left over from the scenario

The use case should
terminate with the

customer leaving the store

Not quite!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Grammatical construct UML Component
Concrete Person, Thing Object
noun class

verb Operation

Classifying verb Inheritance

Possessive Verb Aggregation

modal Verb Constraint

Adjective Attribute

Intransitive verb Operation (Event)

Textual Analysis using Abbot‘s technique

Example
“Monopoly"
“toy"

“enters"

“is a" ,“either..or",
“kind of…"
"Has a ", “consists of"

“must be", “less than…"

"3 years old"

“depends on…."

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Generation of a class diagram from flow of events

♦ The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes and
it must cost less than 50 Euro.
He tries a videogame, which
uses a data glove and a head-
mounted display. He likes it.

An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends another
type of toy, namely a boardgame.
The customer buy the game and
leaves the store

type of toy

customer

depends

storeenters
Customer

?

enter()

toy

daughter

suitable

*

less than 50 Euro
store

enter()

daughter
age

toy

buy()

videogame boardgame

toy

age

videogame

daughter

boardgame

Flow of events:

toy
price
buy()
like()

buy

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Order of activities in modeling

1. Formulate a few scenarios with help from the end user and/or application
domain expert.

2. Extract the use cases from the scenarios, with the help of application
domain expert.

3. Analyse the flow of events, for example with Abbot's textual analysis.
4. Generate the class diagrams, which includes the following steps:

1. Class identification (textual analysis, domain experts).
2. Identification of attributes and operations (sometimes before the classes

are found!)
3. Identification of associations between classes
4. Identification of multiplicities
5. Identification of roles
6. Identification of constraints

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Some issues in object modeling

♦ Improving the readability of class diagrams
♦ Managing object modeling
♦ Different users of class diagrams

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Avoid Ravioli Models

Customer

Name

CustomerId

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountI
d
AccountId

Bank

Name Has**

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Don’t put too
many classes
into the same

package:
7+-2 (or even

5+-2)

Don’t put too
many classes
into the same

package:
7+-2 (or even

5+-2)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Put Taxonomies on a separate Diagram

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

Account

Amount

Deposit()
Withdraw()
GetBalance()

CustomerIdAccountI
d
AccountId

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Project Management Heuristics

♦ Explicitly schedule meetings for object identification
♦ First just find objects
♦ Then try to differentiate them between entity, interface and

control objects
♦ Find associations and their multiplicity

! Unusual multiplicities usually lead to new objects or categories

♦ Identify Inheritance: Look for a Taxonomy, Categorize
♦ Identify Aggregation

♦ Allow time for brainstorming , Iterate, iterate

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Who uses class diagrams?
♦ Purpose of Class diagrams :

! The description of the static properties of a system (main purpose)

♦ Who uses class diagrams?
♦ The customer and the end user are often not interested in class

diagrams. They usually focus more on the functionality of the
system.

♦ The application domain expert uses class diagrams to model the
application domain

♦ The developer uses class diagrams during the development of a
system,that is, during analysis, system design, object design and
implementation.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Class-diagrams have different types of „users“

♦ According to the development activity, the developer plays
different roles.
! Analyst
! System-Designer,
! DetailedDesigner
! Implementor.

♦ In small systems some of the roles do not exist or are played by
the same person.

♦ Each of these roles has a different view about the models.
♦ Before I describe these different views, I want to distinguish

the types of classes that appear in class diagrams.
! Application domain classes
! Solution domain classes

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Application domain vs solution domain

♦ Application domain:
! The problem domain (financial services, meteorology, accident

management, architecture, …).
♦ Application domain class:

! An abstraction in the application domain. If we model business
applications, these classes are also called business objects.

! Example: Board game, Tournament
♦ Solution domain:

! Domains that help in the solution of problems (tele communication,
data bases, compiler construction, operting systems, ….)

♦ Solution domain class:
♦ An abstraction, that is introduced for technical reasons, because

it helps in the solution of a problem.
! Examples: Tree, Hashtable, Scheduler

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Analysis model

♦ The Analysis modell is constructure during the analyse phase.
! Main stake holders: End user, Customer, Analyst.
! The diagram contains only application domain classes.

♦ The analysis model is the base for communication between
analyists, experts in the application domain and end users of the
system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Object design model

♦ The object design model (sometimes also called specification
model) is created during the object design phase
! Main stake holders are class specificiers, class implementors and

class users
! The class diagrams contain applikation and solution domain

classes.
♦ The object design model is the basis of communication

between designers and implementors.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Summary

♦ Modeling vs reality
♦ System modeling

! Object model
! Dynamic model
! Functional model

♦ Object modeling is the central activity
! Class identification is a major activity of object modeling
! There are some easy syntactic rules to find classes/objects

♦ Different roles during software development
♦ Requirements Analysis Document Structure

