
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 10,
Mapping Models to Code

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Overview

♦ Object design is situated between system design and
implementation. Object design is not very well understood
and if not well done, leads to a bad system implementation.

♦ In this lecture, we describe a selection of transformations to
illustrate a disciplined approach to implementation to avoid
system degradation.
1. Operations on the object model:

� Optimizations to address performance requirements
2. Implementation of class model components:

� Realization of associations
� Realization of operation contracts

3. Realizing entity objects based on selected storage strategy
� Mapping the class model to a storage schema

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Characteristics of Object Design Activities

♦ Developers perform transformations to the object model to
improve its modularity and performance.

♦ Developers transform the associations of the object model into
collections of object references, because programming
languages do not support the concept of association.

♦ If the programming language does not support contracts, the
developer needs to write code for detecting and handling
contract violations.

♦ Developers often revise the interface specification to
accommodate new requirements from the client.

♦ All these activities are intellectually not challenging
� However, they have a repetitive and mechanical flavor that makes

them error prone.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

State of the Art of Model-based Software Engineering

♦ The Vision
� During object design we would like to implement a system that

realizes the use cases specified during requirements elicitation and
system design.

♦ The Reality
� Different developers usually handle contract violations differently.
� Undocumented parameters are often added to the API to address a

requirement change.
� Additional attributes are usually added to the object model, but are

not handled by the persistent data management system, possibly
because of a miscommunication.

� Many improvised code changes and workarounds that eventually
yield to the degradation of the system.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Model transformations

Source code space

Forward engineering
Refactoring

Reverse engineering

Model space

Model
transformation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Model Transformation Example

Object design model before transformation

Object design model
after transformation:

Advertiser
+email:Address

Player
+email:Address

LeagueOwner
+email:Address

PlayerAdvertiserLeagueOwner

User
+email:Address

Page 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Refactoring Example: Pull Up Field

public class Player {
private String email;
//...

}
public class LeagueOwner {

private String eMail;
//...

}
public class Advertiser {

private String email_address;
//...

}

public class User {
private String email;

}

public class Player extends User {
//...

}
public class LeagueOwner extends

User {
//...

}

public class Advertiser extends
User {
//...

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Refactoring Example: Pull Up Constructor Body
public class User {

private String email;
}

public class Player extends User {
public Player(String email) {

this.email = email;
}

}
public class LeagueOwner extends

User{
public LeagueOwner(String email) {

this.email = email;
}

}

public class Advertiser extendsUser{
public Advertiser(String email) {

this.email = email;
}

}

public class User {
public User(String email) {

this.email = email;
}

}
public class Player extends User {

public Player(String email) {
super(email);

}
}
public class LeagueOwner extends

User {
public LeagueOwner(String email) {

super(email);
}

}
public class Advertiser extends User {

public Advertiser(String email) {
super(email);

}
}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Forward Engineering Example

public class User {
private String email;
public String getEmail() {

return email;
}
public void setEmail(String value){

email = value;
}
public void notify(String msg) {

//
}
/* Other methods omitted */

}

public class LeagueOwner extends User {
private int maxNumLeagues;
public int getMaxNumLeagues() {

return maxNumLeagues;
}
public void setMaxNumLeagues

(int value) {
maxNumLeagues = value;

}
/* Other methods omitted */

}

User LeagueOwner
+maxNumLeagues:int

Object design model before transformation

Source code after transformation

+email:String
+notify(msg:String)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Other Mapping Activities

♦ Optimizing the Object Design Model
♦ Mapping Associations
♦ Mapping Contracts to Exceptions
♦ Mapping Object Models to Tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Collapsing an object without interesting behavior

Person SocialSecurity
number:String

Person
SSN:String

Object design model before transformation

Object design model after transformation?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Delaying expensive computations

Object design model before transformation

Object design model after transformation

Image

filename:String

paint()
data:byte[]

Image

filename:String

RealImage

data:byte[]

ImageProxy

filename:String

image
1 0..1

paint()

paint() paint()

?

Page 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Other Mapping Activities

9 Optimizing the Object Design Model
¾ Mapping Associations
♦ Mapping Contracts to Exceptions
♦ Mapping Object Models to Tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Realization of a unidirectional, one-to-one association

AccountAdvertiser 11

Object design model before transformation

Source code after transformation

public class Advertiser {
private Account account;
public Advertiser() {

account = new Account();
}
public Account getAccount() {

return account;
}

}

?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Bidirectional one-to-one association

public class Advertiser {
/* The account field is initialized
* in the constructor and never
* modified. */

private Account account;

public Advertiser() {
account = new Account(this);

}
public Account getAccount() {

return account;
}

}

AccountAdvertiser 11
Object design model before transformation

Source code after transformation
public class Account {

/* The owner field is initialized
* during the constructor and
* never modified. */

private Advertiser owner;

public Account(owner:Advertiser) {
this.owner = owner;

}
public Advertiser getOwner() {

return owner;
}

}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Bidirectional, one-to-many association

public class Advertiser {
private Set accounts;
public Advertiser() {

accounts = new HashSet();
}
public void addAccount(Account a) {

accounts.add(a);
a.setOwner(this);

}
public void removeAccount(Account a)
{

accounts.remove(a);
a.setOwner(null);

}
}

public class Account {
private Advertiser owner;
public void setOwner(Advertiser newOwner)
{

if (owner != newOwner) {
Advertiser old = owner;
owner = newOwner;
if (newOwner != null)

newOwner.addAccount(this);
if (oldOwner != null)

old.removeAccount(this);
}

}
}

Advertiser Account
1 *

Object design model before transformation

Source code after transformation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Bidirectional, many-to-many association

public class Tournament {
private List players;
public Tournament() {

players = new ArrayList();
}
public void addPlayer(Player p) {

if (!players.contains(p)) {
players.add(p);
p.addTournament(this);

}
}

}

public class Player {
private List tournaments;
public Player() {

tournaments = new ArrayList();
}
public void addTournament(Tournament t)
{

if (!tournaments.contains(t)) {
tournaments.add(t);
t.addPlayer(this);

}
}

}

Tournament Player* *

Source code after transformation

{ordered}

Object design model before transformation

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Bidirectional qualified association

Object design model before forward engineering

PlayernickName 0..1*League

Player**

Object design model before transformation

League
nickName

Source code after forward engineering

Page 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Bidirectional qualified association (continued)

public class League {
private Map players;

public void addPlayer
(String nickName, Player p) {

if (!players.containsKey(nickName)) {
players.put(nickName, p);
p.addLeague(nickName, this);

}
}

}

public class Player {
private Map leagues;

public void addLeague
(String nickName, League l) {
if (!leagues.containsKey(l)) {

leagues.put(l, nickName);
l.addPlayer(nickName, this);

}
}

}

Source code after forward engineering

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Transformation of an association class

Tournament Player
* *

Object design model before transformation

Object design model after transformation: 1 class and two binary associations

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

Tournament Player* *
1 1

Statistics

+getAverageStat(name)
+getTotalStat(name)
+updateStats(match)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Other Mapping Activities

9 Optimizing the Object Design Model
9 Mapping Associations
¾ Mapping Contracts to Exceptions
♦ Mapping Object Models to Tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Exceptions as building blocks for contract violations

♦ Many object-oriented languages, including Java do not include
built-in support for contracts.

♦ However, we can use their exception mechanisms as building
blocks for signaling and handling contract violations

♦ In Java we use the try-throw-catch mechanism
♦ Example:

� Let us assume the acceptPlayer() operation of TournamentControl
is invoked with a player who is already part of the Tournament.

� In this case acceptPlayer() should throw an exception of type
KnownPlayer.

� See source code on next slide

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

The try-throw-catch Mechanism in Java
public class TournamentControl {

private Tournament tournament;
public void addPlayer(Player p) throws KnownPlayerException {

if (tournament.isPlayerAccepted(p)) {
throw new KnownPlayerException(p);

}
//... Normal addPlayer behavior

}
}
public class TournamentForm {

private TournamentControl control;
private ArrayList players;
public void processPlayerApplications() { // Go through all the players

for (Iteration i = players.iterator(); i.hasNext();) {
try { // Delegate to the control object.

control.acceptPlayer((Player)i.next());
} catch (KnownPlayerException e) {

// If an exception was caught, log it to the console
ErrorConsole.log(e.getMessage());

}
}

}
}

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Implementing a contract

For each operation in the contract, do the following
♦ Check precondition: Check the precondition before the

beginning of the method with a test that raises an exception if
the precondition is false.

♦ Check postcondition: Check the postcondition at the end of
the method and raise an exception if the contract is violated. If
more than one postcondition is not satisfied, raise an exception
only for the first violation.

♦ Check invariant: Check invariants at the same time as
postconditions.

♦ Deal with inheritance: Encapsulate the checking code for
preconditions and postconditions into separate methods that can
be called from subclasses.

Page 5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

A complete implementation of the
Tournament.addPlayer() contract

«precondition»
!isPlayerAccepted(p)

«invariant»
getMaxNumPlayers() > 0

«precondition»
getNumPlayers() <

getMaxNumPlayers()

Tournament

+isPlayerAccepted(p:Player):boolean
+addPlayer(p:Player)

+getMaxNumPlayers():int

-maxNumPlayers: int
+getNumPlayers():int

«postcondition»
isPlayerAccepted(p)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Heuristics for Mapping Contracts to Exceptions

Be pragmatic, if you don’t have enough time.
♦ Omit checking code for postconditions and invariants.

� Usually redundant with the code accomplishing the functionality of
the class

� Not likely to detect many bugs unless written by a separate tester.

♦ Omit the checking code for private and protected methods.
♦ Focus on components with the longest life

� Focus on Entity objects, not on boundary objects associated with
the user interface.

♦ Reuse constraint checking code.
� Many operations have similar preconditions.
� Encapsulate constraint checking code into methods so that they can

share the same exception classes.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Other Mapping Activities

9 Optimizing the Object Design Model
9 Mapping Associations
9 Mapping Contracts to Exceptions
¾ Mapping Object Models to Tables

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Mapping an object model to a relational database

♦ UML object models can be mapped to relational databases:
� Some degradation occurs because all UML constructs must be

mapped to a single relational database construct - the table.

♦ UML mappings
� Each class is mapped to a table
� Each class attribute is mapped onto a column in the table
� An instance of a class represents a row in the table
� A many-to-many association is mapped into its own table
� A one-to-many association is implemented as buried foreign key

♦ Methods are not mapped

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Mapping the User class to a database table

User

+firstName:String
+login:String
+email:String

id:long firstName:text[25] login:text[8] email:text[32]

User table

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Primary and Foreign Keys

♦ Any set of attributes that could be used to uniquely identify any
data record in a relational table is called a candidate key.

♦ The actual candidate key that is used in the application to
identify the records is called the primary key.

� The primary key of a table is a set of attributes whose values
uniquely identify the data records in the table.

♦ A foreign key is an attribute (or a set of attributes) that
references the primary key of another table.

Page 6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Example for Primary and Foreign Keys
User table

Candidate key

login email
“am384” “am384@mail.org”

“js289” “john@mail.de”

firstName
“alice”

“john”

“bd” “bobd@mail.ch”“bob”

Candidate key

Primary key

League table login

“am384”

“am384”

name

“tictactoeNovice”

“tictactoeExpert”

“js289”“chessNovice”

Foreign key referencing User table
Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Buried Association

♦ Associations with multiplicity one can be implemented using a
foreign key.

♦ For one-to-many associations we add a foreign key to the table
representing the class on the “many” end.

♦ For all other associations we can select either class at the end of
the association.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Buried Association

LeagueLeagueOwner *1

id:long
LeagueOwner table

... owner:long
League table

...id:long

♦ Associations with multiplicity “one” can be implemented using
a foreign key. Because the association vanishes in the table, we
call this a buried association.

♦ For one-to-many associations we add the foreign key to the
table representing the class on the “many” end.

♦ For all other associations we can select either class at the end of
the association.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Another Example for Buried Association

Transaction

transactionID

Portfolio

portfolioID
...

*

portfolioID ...

Portfolio Table

transactionID

Transaction Table

portfolioID

Foreign Key

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Mapping Many-To-Many Associations

City
cityName

Airport
airportCode
airportName

* *Serves

cityName
Houston
Albany
Munich

Hamburg

City Table

airportCode
IAH
HOU
ALB
MUC
HAM

Airport Table

airportName
Intercontinental

Hobby
Albany County
Munich Airport

Hamburg Airport

Primary Key

cityName
Houston
Houston
Albany
Munich

Hamburg

Serves Table

airportCode
IAH
HOU
ALB
MUC
HAM

In this case we need a separate table for the association

Separate table for
“Serves” association

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Mapping the Tournament/Player association as a
separate table

PlayerTournament **

id

Tournament table

23

name ...

novice

24 expert
tournament player

TournamentPlayerAssociation
table

23 56

23 79

Player table

id

56

name ...

alice

79 john

Page 7

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Realizing Inheritance

♦ Relational databases do not support inheritance
♦ Two possibilities to map UML inheritance relationships to a

database schema
� With a separate table (vertical mapping)

� The attributes of the superclass and the subclasses are mapped
to different tables

� By duplicating columns (horizontal mapping)
� There is no table for the superclass
� Each subclass is mapped to a table containing the attributes of

the subclass and the attributes of the superclass

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Realizing inheritance with a separate table

User table

id

56

name ...

zoe

79 john

role

LeagueOwner

Player

Player

User

LeagueOwner
maxNumLeagues credits

name

Player table

id

79

credits ...

126

id

LeagueOwner table

56

maxNumLeagues ...

12

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Realizing inheritance by duplicating columns

Player

User

LeagueOwner
maxNumLeagues credits

name

id
LeagueOwner table

56

maxNumLeagues ...

12

name

zoe

Player table
id

79

credits ...

126

name

john

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 40

Comparison: Separate Tables vs Duplicated Columns

♦ The trade-off is between modifiability and response time
� How likely is a change of the superclass?
� What are the performance requirements for queries?

♦ Separate table mapping
☺We can add attributes to the superclass easily by adding a column

to the superclass table
/Searching for the attributes of an object requires a join operation.

♦ Duplicated columns
/Modifying the database schema is more complex and error-prone
☺Individual objects are not fragmented across a number of tables,

resulting in faster queries

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 41

Heuristics for Transformations

♦ For a given transformation use the same tool
� If you are using a CASE tool to map associations to code, use the

tool to change association multiplicities.

♦ Keep the contracts in the source code, not in the object design
model
� By keeping the specification as a source code comment, they are

more likely to be updated when the source code changes.

♦ Use the same names for the same objects
� If the name is changed in the model, change the name in the code

and or in the database schema.
� Provides traceability among the models

♦ Have a style guide for transformations
� By making transformations explicit in a manual, all developers can

apply the transformation in the same way.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 42

Summary

♦ Undisciplined changes => degradation of the system model
♦ Four mapping concepts were introduced

� Model transformation improves the compliance of the object design
model with a design goal

� Forward engineering improves the consistency of the code with
respect to the object design model

� Refactoring improves the readability or modifiability of the code
� Reverse engineering attempts to discover the design from the code.

♦ We reviewed model transformation and forward engineering
techniques:
� Optimizing the class model
� Mapping associations to collections
� Mapping contracts to exceptions
� Mapping class model to storage schemas

