
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng

Chapter 11, Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline

♦ Terminology
♦ Types of errors
♦ Dealing with errors
♦ Quality assurance vs Testing
♦ Component Testing

! Unit testing
! Integration testing

♦ Testing Strategy
♦ Design Patterns & Testing

♦ System testing
! Function testing
! Structure Testing
! Performance testing
! Acceptance testing
! Installation testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

What is this?

A failure?

An error?

A fault?

Need to specify
the desired behavior first!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Erroneous State (“Error”)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Algorithmic Fault

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Mechanical Fault

Page 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Terminology

♦ Reliability: The measure of success with which the observed
behavior of a system confirms to some specification of its
behavior.

♦ Failure: Any deviation of the observed behavior from the
specified behavior.

♦ Error: The system is in a state such that further processing by
the system will lead to a failure.

♦ Fault (Bug): The mechanical or algorithmic cause of an error.

There are many different types of errors and different ways how
we can deal with them.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

How do we deal with Errors and Faults?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Verification?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Modular Redundancy?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Declaring the Bug
as a Feature?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Patching?

Page 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Testing?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Examples of Faults and Errors

♦ Faults in the Interface
specification
! Mismatch between what the

client needs and what the
server offers

! Mismatch between
requirements and
implementation

♦ Algorithmic Faults
! Missing initialization
! Branching errors (too soon,

too late)
! Missing test for null

♦ Mechanical Faults (very
hard to find)
! Documentation does not

match actual conditions or
operating procedures

♦ Errors
! Stress or overload errors
! Capacity or boundary errors
! Timing errors
! Throughput or performance

errors

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Dealing with Errors

♦ Verification:
! Assumes hypothetical environment that does not match real

environment
! Proof might be buggy (omits important constraints; simply wrong)

♦ Modular redundancy:
! Expensive

♦ Declaring a bug to be a “feature”
! Bad practice

♦ Patching
! Slows down performance

♦ Testing (this lecture)
! Testing is never good enough

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Another View on How to Deal with Errors
♦ Error prevention (before the system is released):

! Use good programming methodology to reduce complexity
! Use version control to prevent inconsistent system
! Apply verification to prevent algorithmic bugs

♦ Error detection (while system is running):
! Testing: Create failures in a planned way
! Debugging: Start with an unplanned failures
! Monitoring: Deliver information about state. Find performance bugs

♦ Error recovery (recover from failure once the system is released):
! Data base systems (atomic transactions)
! Modular redundancy
! Recovery blocks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Some Observations

♦ It is impossible to completely test any nontrivial module or any
system
! Theoretical limitations: Halting problem
! Practial limitations: Prohibitive in time and cost

♦ Testing can only show the presence of bugs, not their absence
(Dijkstra)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Testing takes creativity

♦ Testing often viewed as dirty work.
♦ To develop an effective test, one must have:

" Detailed understanding of the system
" Knowledge of the testing techniques
" Skill to apply these techniques in an effective and efficient manner

♦ Testing is done best by independent testers
! We often develop a certain mental attitude that the program should

in a certain way when in fact it does not.

♦ Programmer often stick to the data set that makes the program
work
! "Don’t mess up my code!"

♦ A program often does not work when tried by somebody else.
! Don't let this be the end-user.

Page 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Testing Activities

Tested
Subsystem

Subsystem
Code

FunctionalIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsystem
Code

Subsystem
Code

All tests by developer

Functioning
System

Integrated
Subsystems

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Global
Requirements

Testing Activities continued

User’s understanding
Tests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by user

Tests by client

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Fault Handling Techniques

Testing

Fault Handling

Fault Avoidance Fault ToleranceFault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

ReviewsDesign
Methodology

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Quality Assurance encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype
Testing

Scenario
Testing

Product
Testing

Fault Avoidance Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews

Walkthrough Inspection

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Types of Testing

♦ Unit Testing:
! Individual subsystem
! Carried out by developers
! Goal: Confirm that subsystems is correctly coded and carries out the

intended functionality
♦ Integration Testing:

! Groups of subsystems (collection of classes) and eventually the entire
system

! Carried out by developers
! Goal: Test the interface among the subsystem

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

System Testing

♦ System Testing:
! The entire system
! Carried out by developers
! Goal: Determine if the system meets the requirements (functional

and global)

♦ Acceptance Testing:
! Evaluates the system delivered by developers
! Carried out by the client. May involve executing typical

transactions on site on a trial basis
! Goal: Demonstrate that the system meets customer requirements

and is ready to use

♦ Implementation (Coding) and testing go hand in hand

Page 5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Unit Testing

♦ Informal:
! Incremental coding

♦ Static Analysis:
! Hand execution: Reading the source code
! Walk-Through (informal presentation to others)
! Code Inspection (formal presentation to others)
! Automated Tools checking for

" syntactic and semantic errors
" departure from coding standards

♦ Dynamic Analysis:
! Black-box testing (Test the input/output behavior)
! White-box testing (Test the internal logic of the subsystem or

object)
! Data-structure based testing (Data types determine test cases)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Black-box Testing

♦ Focus: I/O behavior. If for any given input, we can predict the
output, then the module passes the test.
! Almost always impossible to generate all possible inputs ("test

cases")

♦ Goal: Reduce number of test cases by equivalence partitioning:
! Divide input conditions into equivalence classes
! Choose test cases for each equivalence class. (Example: If an object

is supposed to accept a negative number, testing one negative
number is enough)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Black-box Testing (Continued)

♦ Selection of equivalence classes (No rules, only guidelines):
! Input is valid across range of values. Select test cases from 3

equivalence classes:
" Below the range
" Within the range
" Above the range

! Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:

" Valid discrete value
" Invalid discrete value

♦ Another solution to select only a limited amount of test cases:
! Get knowledge about the inner workings of the unit being tested =>

white-box testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

White-box Testing

♦ Focus: Thoroughness (Coverage). Every statement in the component is
executed at least once.

♦ Four types of white-box testing
! Statement Testing
! Loop Testing
! Path Testing
! Branch Testing

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

White-box Testing (Continued)
♦ Statement Testing (Algebraic Testing): Test single statements

(Choice of operators in polynomials, etc)
♦ Loop Testing:

! Cause execution of the loop to be skipped completely. (Exception:
Repeat loops)

! Loop to be executed exactly once
! Loop to be executed more than once

♦ Path testing:
! Make sure all paths in the program are executed

♦ Branch Testing (Conditional Testing): Make sure that each
possible outcome from a condition is tested at least once

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

/*Read in and sum the scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile)
{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;

}
Read(ScoreFile, Score);

}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores/NumberOfScores;
printf("The mean score is %f \n", Mean);

} else
printf("No scores found in file\n");

}

Page 6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

White-box Testing Example: Determining the Paths
FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}

1

2
3

4

5

7

6

8

9

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Constructing the Logic Flow Diagram

Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Finding the Test Cases
Start

2

3

4 5

6

7

8 9

Exit

1

b

d e

gf

i j

h
c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

be empty)

(Total score > 0.0)(Total score < 0.0)

(Positive score) (Negative score)

(Reached if either f or
e is reached)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Comparison of White & Black-box Testing

♦ White-box Testing:
! Potentially infinite number of

paths have to be tested
! White-box testing often tests

what is done, instead of what
should be done

! Cannot detect missing use cases
♦ Black-box Testing:

! Potential combinatorical
explosion of test cases (valid &
invalid data)

! Often not clear whether the
selected test cases uncover a
particular error

! Does not discover extraneous
use cases ("features")

♦ Both types of testing are needed
♦ White-box testing and black box

testing are the extreme ends of a
testing continuum.

♦ Any choice of test case lies in
between and depends on the
following:
! Number of possible logical paths
! Nature of input data
! Amount of computation
! Complexity of algorithms and

data structures

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

The 4 Testing Steps

1. Select what has to be
measured
! Analysis: Completeness of

requirements
! Design: tested for cohesion
! Implementation: Code tests

2. Decide how the testing is
done
! Code inspection
! Proofs (Design by Contract)
! Black-box, white box,
! Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
! A test case is a set of test

data or situations that will
be used to exercise the unit
(code, module, system) being
tested or about the attribute
being measured

4. Create the test oracle
! An oracle contains of the

predicted results for a set of
test cases

! The test oracle has to be
written down before the
actual testing takes place

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Guidance for Test Case Selection

♦ Use analysis knowledge
about functional
requirements (black-box
testing):
! Use cases
! Expected input data
! Invalid input data

♦ Use design knowledge about
system structure, algorithms,
data structures (white-box
testing):
! Control structures

" Test branches, loops, ...
! Data structures

" Test records fields, arrays,
...

♦ Use implementation
knowledge about algorithms:
! Examples:
! Force division by zero
! Use sequence of test cases for

interrupt handler

Page 7

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Unit-testing Heuristics

1. Create unit tests as soon as object
design is completed:
! Black-box test: Test the use

cases & functional model
! White-box test: Test the

dynamic model
! Data-structure test: Test the

object model
2. Develop the test cases

! Goal: Find the minimal
number of test cases to cover
as many paths as possible

3. Cross-check the test cases to
eliminate duplicates
! Don't waste your time!

4. Desk check your source code
! Reduces testing time

5. Create a test harness
! Test drivers and test stubs are

needed for integration testing
6. Describe the test oracle

! Often the result of the first
successfully executed test

7. Execute the test cases
! Don’t forget regression testing
! Re-execute test cases every time

a change is made.
8. Compare the results of the test with the

test oracle
! Automate as much as possible

