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Chapter 11, Testing
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Outline

♦ Terminology
♦ Types of errors
♦ Dealing with errors
♦ Quality assurance vs Testing
♦ Component Testing

! Unit testing
! Integration testing 

♦ Testing Strategy
♦ Design Patterns & Testing

♦ System testing
! Function testing
! Structure Testing
! Performance testing
! Acceptance testing
! Installation testing
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What is this?

A failure?

An error?

A fault?

Need to specify
the desired behavior first!
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Erroneous State (“Error”)
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Algorithmic Fault
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Mechanical Fault
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Terminology

♦ Reliability: The measure of success with which the observed 
behavior of a system confirms to some specification of its 
behavior.

♦ Failure: Any deviation of the observed behavior from the 
specified behavior.

♦ Error: The system is in a state such that further processing by 
the system will lead to a failure.

♦ Fault (Bug): The mechanical or algorithmic cause of an error.

There are many different types of errors and different ways how 
we can deal with them.
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How do we deal with Errors and Faults?
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Verification?
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Modular Redundancy?
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Declaring the Bug 
as a Feature?
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Patching?
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Testing?
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Examples of Faults and Errors

♦ Faults in the Interface 
specification
! Mismatch between what the 

client needs and what the 
server offers

! Mismatch between 
requirements and 
implementation

♦ Algorithmic Faults 
! Missing initialization
! Branching errors (too soon, 

too late)
! Missing test for null

♦ Mechanical Faults (very 
hard to find)
! Documentation does not 

match  actual conditions or 
operating procedures

♦ Errors
! Stress or overload errors
! Capacity or boundary errors
! Timing errors
! Throughput or performance 

errors
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Dealing with Errors

♦ Verification:
! Assumes hypothetical environment that does not match real 

environment
! Proof might be buggy (omits important constraints; simply wrong)

♦ Modular redundancy:
! Expensive

♦ Declaring a bug to be a “feature” 
! Bad practice

♦ Patching
! Slows down performance

♦ Testing (this lecture)
! Testing is never good enough
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Another View on How to Deal with Errors
♦ Error prevention (before the system is released):

! Use good programming methodology to reduce complexity 
! Use version control to prevent inconsistent system
! Apply verification to prevent algorithmic bugs

♦ Error detection (while system is running):
! Testing: Create failures in a planned way
! Debugging: Start with an unplanned failures
! Monitoring: Deliver information about state. Find performance bugs

♦ Error recovery (recover from failure once the system is released):
! Data base systems (atomic transactions)
! Modular redundancy
! Recovery blocks
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Some Observations

♦ It is impossible to completely test any nontrivial module or any
system
! Theoretical limitations: Halting problem
! Practial limitations: Prohibitive in time and cost

♦ Testing can only show the presence of bugs, not their absence 
(Dijkstra)
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Testing takes creativity

♦ Testing often viewed as dirty work.
♦ To develop an effective test, one must have:

" Detailed understanding of the system 
" Knowledge of the testing techniques
" Skill to apply these techniques in an effective and efficient manner

♦ Testing is done best by independent testers
! We often develop a certain mental attitude that the program should 

in a certain way when in fact it does not.

♦ Programmer often stick to the data set that makes the program 
work 
! "Don’t mess up my code!"

♦ A program often does not work when tried by somebody else.
! Don't let this be the end-user.
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Testing Activities 
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Global
Requirements

Testing Activities continued

User’s understanding
Tests by developer

Performance Acceptance

Client’s 
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Fault Handling Techniques

Testing
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Quality Assurance encompasses Testing
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Types of  Testing

♦ Unit Testing:
! Individual subsystem
! Carried out by developers
! Goal: Confirm that subsystems is correctly coded and carries out the 

intended functionality
♦ Integration Testing:

! Groups of subsystems (collection of classes) and eventually the entire 
system

! Carried out by developers
! Goal: Test the interface among the subsystem
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System Testing

♦ System Testing:
! The entire system
! Carried out by developers
! Goal: Determine if the system meets the requirements (functional 

and global)

♦ Acceptance Testing:
! Evaluates the system delivered by developers
! Carried out by the client.  May involve executing typical 

transactions on site on a trial basis
! Goal: Demonstrate that the system meets customer requirements 

and is ready to use

♦ Implementation (Coding) and testing go hand in hand
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Unit Testing

♦ Informal: 
! Incremental coding

♦ Static Analysis:
! Hand execution: Reading the  source code
! Walk-Through (informal presentation to others)
! Code Inspection (formal presentation to others)
! Automated Tools checking for

" syntactic and semantic errors
" departure from coding standards

♦ Dynamic Analysis:
! Black-box testing (Test the  input/output behavior)
! White-box testing (Test the internal logic of the subsystem or 

object)
! Data-structure based testing  (Data types determine test cases)
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Black-box Testing 

♦ Focus: I/O behavior. If for any given input, we can predict the 
output, then the module passes the test.
! Almost always impossible to generate all possible inputs ("test 

cases")

♦ Goal: Reduce number of test cases by equivalence partitioning:
! Divide input conditions into equivalence classes
! Choose test cases for each equivalence class. (Example: If an object 

is supposed to accept a negative number,  testing one negative 
number is enough)
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Black-box Testing (Continued)

♦ Selection of equivalence classes (No rules, only guidelines):
! Input is valid across range of values. Select test cases from  3

equivalence classes:
" Below the range
" Within the range
" Above the range

! Input is valid if it is from a discrete set. Select test cases from 2 
equivalence classes:

" Valid discrete value
" Invalid discrete value

♦ Another solution to select only a limited amount of test cases: 
! Get knowledge about the inner workings of the unit being tested => 

white-box testing
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White-box Testing

♦ Focus: Thoroughness (Coverage). Every statement in the component is 
executed at least once.

♦ Four types of white-box  testing
! Statement Testing
! Loop Testing
! Path Testing
! Branch Testing
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White-box Testing (Continued)
♦ Statement Testing (Algebraic Testing):  Test single statements 

(Choice of operators in polynomials, etc)
♦ Loop Testing:

! Cause execution of the loop to be skipped completely. (Exception: 
Repeat loops)

! Loop to be executed exactly once
! Loop to be executed more than once

♦ Path testing:
! Make sure all paths in the program are executed

♦ Branch Testing  (Conditional Testing): Make sure that each 
possible outcome from a condition is tested at least once
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/*Read in and sum the scores*/

White-box Testing Example
FindMean(float Mean, FILE ScoreFile) 
{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
Read(ScoreFile, Score); 
while (! EOF(ScoreFile) { 

if ( Score > 0.0 ) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;

}
Read(ScoreFile, Score);

}
/* Compute the mean and print the result */
if (NumberOfScores > 0 ) { 

Mean = SumOfScores/NumberOfScores;
printf("The mean score is %f \n",  Mean);

} else 
printf("No scores found in file\n");

}
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White-box Testing Example: Determining the Paths
FindMean (FILE ScoreFile)
{  float SumOfScores = 0.0; 

int NumberOfScores = 0; 
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score  > 0.0 ) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}
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Constructing the Logic Flow Diagram

Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java  33

Finding the Test Cases
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Comparison of White & Black-box Testing

♦ White-box Testing:
! Potentially infinite number of 

paths  have to be tested
! White-box testing often tests 

what is done, instead of what 
should be done

! Cannot  detect missing use cases
♦ Black-box Testing:

! Potential combinatorical 
explosion of test cases (valid & 
invalid data)

! Often not clear whether the 
selected test cases uncover a 
particular error

! Does not discover extraneous 
use cases ("features")

♦ Both types of testing are needed
♦ White-box testing and black box 

testing are the extreme ends of a 
testing continuum. 

♦ Any choice of test case lies in 
between and depends on the 
following:
! Number of possible logical paths
! Nature of input data
! Amount of computation 
! Complexity of algorithms and 

data structures
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The 4 Testing Steps

1. Select what has to be 
measured
! Analysis: Completeness of 

requirements
! Design: tested for cohesion
! Implementation: Code tests

2. Decide how the testing is 
done
! Code inspection
! Proofs (Design by Contract)
! Black-box, white box, 
! Select integration testing 

strategy (big bang, bottom 
up, top down, sandwich)

3. Develop test cases
! A test case is a set of test 

data or situations that will 
be used to exercise the unit 
(code, module, system) being 
tested or about the attribute 
being measured

4. Create the test oracle
! An oracle contains of the 

predicted results for a set of 
test cases 

! The test oracle has to be 
written down before the 
actual testing takes place
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Guidance for Test Case Selection

♦ Use analysis  knowledge
about functional 
requirements (black-box 
testing):
! Use cases
! Expected input data
! Invalid input data

♦ Use design  knowledge about 
system structure, algorithms, 
data structures  (white-box 
testing):
! Control structures

" Test branches, loops, ...
! Data structures

" Test records fields, arrays, 
...

♦ Use implementation  
knowledge about algorithms:
! Examples:
! Force division by zero
! Use sequence of test cases for 

interrupt handler
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Unit-testing Heuristics

1. Create unit tests as soon as object 
design is completed:
! Black-box test: Test the use 

cases & functional model
! White-box test: Test the 

dynamic model
! Data-structure test: Test the 

object model
2. Develop the test cases 

! Goal: Find the minimal 
number of test cases to cover 
as many paths as possible

3. Cross-check the test cases to 
eliminate duplicates
! Don't waste your time!

4. Desk check your source code
! Reduces testing time

5. Create a test harness 
! Test drivers and test stubs are 

needed for integration testing
6. Describe the test oracle

! Often the result of the first 
successfully executed test

7. Execute the test cases
! Don’t forget regression testing
! Re-execute test cases every time 

a change is made.
8. Compare the results of the test with the 

test oracle
! Automate as much as possible


