e’ = Y

[

Chapter 11, Testing

AL

Object-Oriented Software Engineering

Using UML, Patterns, and Java

What isthis?

A failure?

Anerror?

A fault?

Need to specify
the desired behavior first!

Bernd Bruegge . Allen H. Dutot Using UML, Pattrns, and Java

Algorithmic Fault

Bernd Bruegge s Allen H. Dutot

Outline

+ Terminology
+ Typesof errors
+ Dealing with errors
+ Quality assurance vs Testing
+ Component Testing
+ Unit testing
+ Integration testing
+ Testing Strategy
+ Design Patterns & Testing

+ System testing
+ Function testing
+ Structure Testing
+ Performance testing
+ Acceptance testing
+ Installation testing

Bernd Bruepge & Allen H, Dutoit

Erroneous State (“ Error”)

Mechanical Fault

Bernd Bruenge . Allen H. Dutot ObjectOrientad Sftware Enginesring: Using UML. Pattans, and Java

Page 1

Terminology

+ Reliability: The measure of success with which the observed
behavior of a system confirms to some specification of its
behavior.

+ Failure: Any deviation of the observed behavior from the
specified behavior.

+ Error: The system isin a state such that further processing by
the system will lead to afailure.

+ Fault (Bug): The mechanical or algorithmic cause of an error.

There are many different types of errors and different ways how
we can deal with them.

Bernd Bruegge . Allen H. Dutot

UsngUML, P a 7

Verification?

Bernd Bruegge . Allen H. Dutot

Using UML, Pattrns, and Java 9

Declaring the Bug
asa Feature?

Object-Orientad Sftware Engineering: Using UML. Pattans, and Java 1

Bernd Bruenge . Allen H. Dutot

Page 2

How do we deal with Errorsand Faults?

Bernd Bruepge & Allen H, Dutoit

UsnguML, P 3 s

Modular Redundancy?

Bnd Bruegge . Allen H. Dutol

Patching?

Bnd Bruegge & Alle H. Dutoit

Object Oriented Softvare Enginesring: Using UMIL, Patterns and Java 2

Testing?

Bernd Bruepge . Allen H, Dutoit

Dealing with Errors

«+ Verification:
+ Assumes hypothetical environment that does not match real
environment

+ Proof might be buggy (omitsimportant constraints; simply wrong)
+ Modular redundancy:
+ Expensive
+ Declaring abug to be a“feature”
+ Bad practice
+ Patching
+ Slows down performance
+ Testing (this lecture)
+ Testing is never good enough

Bernd Bruages. Allen H. Dutot UsngumL P 3 15

Some Observations

+ Itisimpossible to completely test any nontrivial module or any
system
+ Theoretical limitations: Halting problem
+ Practial limitations: Prohibitivein time and cost
+ Testing can only show the presence of bugs, not their absence
(Dijkstra)

Bernd Bruenge . Allen H. Dutot Object-Orientad Sftware Enginesring: Using UML. Pattans, and Java w

Examples of Faultsand Errors

+ Faultsin the Interface
specification
+ Mismatch between what the
client needs and what the
server offers

+ Mismatch between
requirements and
implementation

+ Algorithmic Faults

+ Missing initialization

+ Branching errors (too soon,
too late)

+ Missing test for null

+ Mechanical Faults (very
hard to find)

+ Documentation does not
match actual conditions or
oper ating procedures

+ Errors

+ Stressor overload errors

+ Capacity or boundary errors

¢ Timing errors

¢ Throughput or performance
errors

Bernd Bruegge & Allen H. Dutoi

Object-Orient Sftvre Enginesring: Using UM, Patterns. and Java u

Another View on How to Deal with Errors

+ Error prevention (before the system is released):
+ Use good programming methodology to reduce complexity
+ Useversion control to prevent inconsistent system
+ Apply verification to prevent algorithmic bugs
+ Error detection (while system is running):
+ Testing: Createfailuresin a planned way
+ Debugging: Start with an unplanned failures
+ Monitoring: Deliver information about state. Find per for mance bugs
+ Error recovery (recover from failure once the system is rel eased):
+ Data base systems (atomic transactions)

+ Modular redundancy
+ Recovery blocks

Using UMIL, Paterns and 5

Bnd Bruegge . Allen H. Dutol

Testing takes creativity

+ Testing often viewed as dirty work.
+ To develop an effective test, one must have:

+ Detailed under standing of the system

+ Knowledge of the testing techniques

+ Skill to apply these techniquesin an effective and efficient manner
+ Testing is done best by independent testers

+ We often develop a certain mental attitude that the program should
in acertain way when in fact it does not.

+ Programmer often stick to the data set that makes the program

work
+ "Don’'t mess up my code!"

+ A program often does not work when tried by somebody else.

+ Don't let thisbe the end-user.

Bnd Bruegge & Alle H. Dutoit

Object Oriented Softvare Enginesring: Using UMIL, Patterns and Java s

Page 3

Testing Activities

Reguirements

System
Design
Document

Functioning
System

All tests by developer

Bernd Bruepge . Allen H, Dutoit

UsnguML, P

Fault Handling Techniques

Fault Handling

[Fault Detection }

{Fault Tolefanoe}

Fault Avoidance

[

Modular
Redundancy

Atomic
Transactions

Design }
M ethodology

=

Configuration
M anagement

Debugging

Debugaing Debugging

Bernd Bruages. Allen H. Dutot

UsngumL P 3 2

Typesof Testing

+ Unit Testing:
+ Individual subsystem
+ Carried out by developers

+ Goal: Confirm that subsystemsis correctly coded and carries out the
intended functionality

+ Integration Testing:
+ Groups of subsystems (collection of classes) and eventually theentire
system

+ Carried out by developers
+ Goal: Test theinterface among the subsystem

Bernd Bruenge . Allen H. Dutot Object-Orientad Sftware Enginesring: Using UML. Pattans, and Java =

Testing Activities continued

Global
Requirements

User
Environment

Functioning Vdis(: sted
system /Performance” 5" Acceptance s
Test Test
Usable
Tests by client | System
Tests by developer I l
User’sunderstanding
TT——(System i
Use

Tests(?) by user

Quality Assurance encompasses Testing

Quality Assurance

Usability Testing
Scenario |(Prototype |(* Product
Testin Testin Testin
Fault Tolerance
Transactions

Fault Detection

Fault Avoidance
Verification 'Conflguranon
M anagement

Walkthrough

Unit
Testing

Bnd Bruegge . Allen H. Dutol

Integration
Testing

)

System
Testing

Using UMIL, P

System Testing

+ System Testing:
+ Theentiresystem
+ Carried out by developers
+ Goal: Determineif the system meets the requirements (functional
and global)
+ Acceptance Testing:
+ Evaluatesthe system delivered by developers
+ Carried out by theclient. May involve executing typical
transactionson siteon atrial basis
+ Goal: Demonstrate that the system meets customer requirements
and isready to use

+ Implementation (Coding) and testing go hand in hand

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java El

Page 4

Unit Testing

+ Informal:
+ Incremental coding
+ Static Analysis:
+ Hand execution: Reading the source code
+ Walk-Through (informal presentation to others)
+ Code I nspection (formal presentation to others)
+ Automated Tools checking for
+ syntactic and semantic errors
+ departure from coding standards
+ Dynamic Analysis:
+ Black-box testing (Test the input/output behavior)

+ White-box testing (Test theinternal logic of the subsystem or
object)
+ Data-structure based testing (Data types deter mine test cases)

Bernd Bruegge . Allen H. Dutoit UsngUML. P @ >

Black-box Testing (Continued)

+ Selection of equivalence classes (No rules, only guidelines):
+ Input isvalid acrossrange of values. Select test casesfrom 3
equivalence classes:
+ Below therange
+ Within therange
+ Abovetherange
¢ Input isvalid if it isfrom a discrete set. Select test cases from 2
equivalence classes:
+ Valid discrete value
+ Invalid discrete value

+ Another solution to select only alimited amount of test cases:

+ Get knowledge about the inner workings of the unit being tested =>
white-box testing

Bernd Bruages. Allen H. Dutot UsngumL P 3 2

White-box Testing (Continued)

+ Statement Testing (Algebraic Testing): Test single statements
(Choice of operatorsin polynomials, etc)
+ Loop Testing:
+ Cause execution of the loop to be skipped completely. (Exception:
Repeat |oops)
+ Loop to be executed exactly once
+ Loop to be executed morethan once
+ Path testing:
+ Make sureall pathsin the program ar e executed
+ Branch Testing (Conditional Testing): Make sure that each
possible outcome from a condition is tested at least once

Bernd Bruenge . Allen H. Dutot Object-Orientad Sftware Enginesring: Using UML. Pattans, and Java K]

Black-box Testing

+ Focus: /0O behavior. If for any given input, we can predict the
output, then the module passes the test.
+ Almost alwaysimpossible to generate all possible inputs (" test
cases')
+ Goal: Reduce number of test cases by equivalence partitioning:
+ Divideinput conditionsinto equivalence classes

+ Choose test cases for each equivalence class. (Example: If an object
is supposed to accept a negative number, testing one negative
number isenough)

Bernd Bruegge & Allen H. Dutoi Using UMIL, P o Bl

White-box Testing

+ Focus: Thoroughness (Coverage). Every statement in the component is
executed at least once.
+ Four types of white-box testing
+ Statement Testing
+ Loop Testing
+ Path Testing
¢ Branch Testing

Bnd Bruegge . Allen H. Dutol Using UMIL, Paterns and. =

White-box Testing Example

Findvean(float Mean, FILE ScoreFile)

{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
Read(ScoreFile, Score); /*Read in and sum the scores*/
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
3
Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {
Mean = SumOfScores/NumberOfScores;
printf("The mean score is %f \n", Mean);
} else
printf('No scores found in file\n");

3

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java K

Page 5

White-box Testing Example: D

etermining the Paths

FindMean (FILE ScoreFile)

{ [FToat SumOfScores = 0.0;

int NumberOfScores = 0;

Read(ScoreFile, Score);

float Mean=0.0; float Score;

—O

while (! EOF(ScoreFile) {
@if (Score > 0.0) {

SumOfScores = S
NumberOfScores+

umOfScores + Score;
+3

<@

®}

‘Read(ScoreFile, Score);

— (&

/* Compute the mean and p

rint the result */

@ if (NumberOfScores > 0) {
Mean = SumOfScores

printf(* The mean score is %f\n”, Mean);

7 NumberOfScores; ‘

} else

‘ printf (“No scores

found in file\n”); ‘4—@

1

Bernd Bruepge . Allen H, Dutoit

UsnguML, P @ a

Finding the Test Cases

a (Covered by any data)

Positive sc(o‘?/

c
(Data set must]

(Total score< 0.0 i

)

2

b (Dataset myst contain at |east one value)
%ﬂive score)

be empty) f\®/g—.

h (Reached if either f or
eisreached)

\j(TSaI score > 0.0)

UsngUML. P 3 =

Bernd Bruages. Allen H. Dutot

The 4 Testing Steps

1. Select what hasto be
measured

+ Analysis: Completeness of
requirements

+ Design: tested for cohesion
+ Implementation: Code tests
2. Decide how thetesting is
done

+ Code inspection

+ Proofs (Design by Contract)

+ Black-box, white box,

+ Select integration testing
strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases

+ Atest caseisa set of test
data or situationsthat will
be used to exercise the unit
(code, module, system) being
tested or about the attribute
being measured

4. Create the test oracle
+ An oracle contains of the
predicted resultsfor a set of
test cases
+ Thetest oracle hasto be
written down before the
actual testing takes place

Bernd Bruenge . Allen H. Dutot Object Oriented Sftware

Engineering Using UML. Pattans, and Java B

Constructing the Logic Flow Diagram

Bernd Bruegge & Allen H. Dutoi Object-Orient Sftvre Enginesring: Using UM, Patterns. and Java =

Comparison of White & Black-box Testing

+ Both types of testing are needed

+ White-box testing and black box
testing are the extreme ends of a
testing continuum.

+ Any choice of test caseliesin
between and depends on the
following:

+ Number of possiblelogical paths
+ Natureof input data
+ Amount of computation

+ Complexity of algorithms and
data structures

+ White-box Testing:

+ Potentially infinite number of

paths haveto betested

+ White-box testing often tests

what is done, instead of what
should be done

+ Cannot detect missing use cases
+ Black-box Testing:

+ Potential combinatorical
explosion of test cases (valid &
invalid data)

Often not clear whether the

selected test cases uncover a

particular error

+ Does not discover extraneous
use cases (" features")

.

Using UMIL, Paterns and E

Bnd Bruegge . Allen H. Dutol

Guidance for Test Case Selection

+ Use implementation
knowledge about algorithms:

+ Examples:
+ Forcedivision by zero

+ Use sequence of test cases for
interrupt handler

+ Useanalysis knowledge
about functional
requirements (black-box
testing):

+ Use cases
+ Expected input data
+ Invalid input data

+ Usedesign knowledge about
system structure, algorithms,
data structures (white-box
testing):

+ Control structures
+ Test branches, loops, ...
+ Data structures
+ Test recordsfields, arrays,

Bnd Bruegge & Alle H. Dutoit Object Oriented Sftvr e Enginesring: Using UM, Pattens. and Java Kl

Page 6

Unit-testing Heuristics

1. Create unit tests as soon as object
design is compl eted:
+ Black-box test: Test theuse
cases & functional model

* White-box test: Test the
dynamic model

+ Data-structuretest: Test the
object model

2. Develop the test cases

¢ Goal: Find the minimal
number of test cases to cover
asmany paths as possible
3. Cross-check the test casesto
eliminate duplicates
+ Don't waste your time!

4. Desk check your source code
+ Reducestesting time
5. Create atest harness

+ Test driversand test stubsare
needed for integration testing

6. Describe the test oracle

+ Often theresult of thefirst
successfully executed test

7. Execute the test cases
+ Don't forget regression testing

+ Re-execute test casesevery time
achangeis made.

8. Compare the results of the test with the
test oracle

+ Automate as much as possible

Bernd Bruegge . Allen H, Dutoit

UsnguML, P @ El

Page 7

