
U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng

Chapter 12,
Rationale Management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

An aircraft example

A320
♦ First fly-by-wire passenger aircraft
♦ 150 seats, short to medium haul

A319 & A321
♦ Derivatives of A320
♦ Same handling as A320

Design rationale
♦ Reduce pilot training & maintenance costs
♦ Increase flexibility for airline

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

An aircraft example (2)

A330 & A340
♦ Long haul and ultra long haul
♦ 2x seats, 3x range
♦ Similar handling as A320 family

Design rationale
♦ With minimum cross training, A320 pilots can be certified to

fly A330 and A340 airplanes

Consequence
♦ Any change in these five airplanes must maintain this similarity

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

Overview: rationale

♦ What is rationale?
♦ Why is it critical in software engineering?
♦ Centralized traffic control example
♦ Rationale in project management

! Consensus building
! Consistency with goals
! Rapid knowledge construction

♦ Summary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

What is rationale?

Rationale is the reasoning that lead to the system.

Rationale includes:
♦ the issues that were addressed,
♦ the alternatives that were considered,
♦ the decisions that were made to resolve the issues,
♦ the criteria that were used to guide decisions, and
♦ the debate developers went through to reach a decision.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Why is rationale important in software engineering?

Many software systems are like aircraft:

They result from a large number of decisions taken over an
extended period of time.

♦ Evolving assumptions
♦ Legacy decisions
♦ Conflicting criteria

-> high maintenance cost
-> loss & rediscovery of information

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Uses of rationale in software engineering

♦ Improve design support
! Avoid duplicate evaluation of poor alternatives
! Make consistent and explicit trade-offs

♦ Improve documentation support
! Makes it easier for non developers (e.g., managers, lawyers,

technical writers) to review the design

♦ Improve maintenance support
! Provide maintainers with design context

♦ Improve learning
! New staff can learn the design by replaying the decisions that

produced it

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Representing rationale: issue models

Argumentation is the most promising approach so far:
♦ More information than document: captures trade-offs and

discarded alternatives that design documents do not.
♦ Less messy than communication records: communication

records contain everything.

Issue models represent arguments in a semi-structure form:
♦ Nodes represent argument steps
♦ Links represent their relationships

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Decision: Smart Card + PIN

ATM Example

Question: Alternative Authentication Mechanisms?

References: Service: Authenticate

Option 1: Account number

Option 2: Finger print reader

Option 3: Smart Card + PIN

Criteria 1:
ATM Unit Cost

Criteria 2:
Privacy

+ +

+–

+ –

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Centralized traffic control

♦ CTC systems enable dispatchers to monitor and control trains
remotely

♦ CTC allows the planning of routes and replanning in case of
problems

T1291>

<T1515

Signals

Track circuits

Switches

Trains

S1

S2 S3

S4

SW1 SW2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Centralized traffic control (2)

CTC systems are ideal examples of rationale capture:

♦ Long lived systems (some systems include relays installed last
century)
! Extended maintenance life cycle

♦ Although not life critical, downtime is expensive
! Low tolerance for bugs
! Transition to mature technology

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

display?:Issueinput?:Issue

Issues

♦ Issues are concrete problem which usually do not have a
unique, correct solution.

♦ Issues are phrased as questions.

How should the dispatcher input
commands?

How should track sections be
displayed?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

display?:Issue

addressed byaddressed byaddressed by

input?:Issue

text-based:Proposal point&click:Proposal

Proposals

♦ Proposals are possible alternatives to issues.
♦ One proposal can be shared across multiple issues.

The interface for the dispatcher could be
realized with a point & click interface.

The display used by the dispatcher can be a
text only display with graphic characters to

represent track segments.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

display?:Issue

terminal?:Issue

addressed byaddressed byaddressed by

raises

input?:Issue

text-based:Proposal point&click:Proposal

Consequent issue

♦ Consequent issues are issues raised by the introduction of a
proposal.

Which terminal emulation should be used
for the display?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

input?:Issue

text-based:Proposal point&click:Proposal

Criteria
♦ A criteria represent a goodness measure.
♦ Criteria are often design goals or nonfunctional

requirements.

The CTC system should have at least
a 99% availability.

The time to input commands should be less
than two seconds.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Arguments

♦ Arguments represent the debate developers went through to
arrive to resolve the issue.

♦ Arguments can support or oppose any other part of the
rationale.

♦ Arguments constitute the most part of rationale.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

Arguments (2)

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

input?:Issue

text-based:Proposal point&click:Proposal

Point&click interfaces are more complex to implement than text-based interfaces. Hence, they
are also more difficult to test. The point&click interface risksintroducing fatal errors in the

system that would offset any usability benefit the interface would provide.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Resolutions

♦ Resolutions represent decisions.
♦ A resolution summarizes the chosen alternative and the

argument supporting it.
♦ A resolved issue is said to be closed.
♦ A resolved issue can be re-opened if necessary, in which case

the resolution is demoted.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Resolutions (2)

display?:Issue

availability$:Criterionusability$:Criterion

terminal?:Issue

addressed byaddressed byaddressed by

raises meets

fails

meets

fails

availability-first!:Argument

is supported by

is opposed by

text-based&keyboard
:Resolution

resolvesresolves

input?:Issue

text-based:Proposal point&click:Proposal

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Questions, Options, Criteria

♦ Designed for capturing rationale after the fact (e.g., quality
assessment).

♦ QOC emphasizes criteria

Option ! Criterion $

Question ?

positive
assessment +

negative
assessment -

consequent question

response

Argument .

supports +
objects-to -

supports +
objects-to -

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Other issue models:
Decision Representation Language

Decision Problem

Alternative

Goal

AchievesLink

Claim

Claim

QuestionProcedure

is a good alternative for

achieves

supports

denies

is a result of

is an answering
procedure for

denies

supports
presupposes

raises
answers

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Overview: rationale

♦ What is rationale?
♦ Why is it critical in software engineering?
♦ Centralized traffic control example
♦ Rationale in project management

! Consensus building (WinWin)
! Consistency with goals (NFR Framework)
! Rapid knowledge construction (Compendium)

♦ Summary

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Consensus building

Problem
♦ Any realistic project suffers the tension of conflicting goals

! Stakeholders come from different background
! Stakeholders have different criteria

Example
♦ Requirements engineering

! Client: business process (cost and schedule)
! User: functionality
! Developer: architecture
! Manager: development process (cost and schedule)

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Consensus building: WinWin

♦ Incremental, risk-driven spiral process
! Identification of stakeholders
! Identification of win conditions
! Conflict resolution

♦ Asynchronous groupware tool
! Stakeholders post win conditions
! Facilitator detects conflict
! Stakeholders discuss alternatives
! Stakeholders make agreements

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

Consensus building: Model

Win Condition

Issue

Option

Agreement

involves

covers

addresses

adopts

Taxonomy Category

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Consensus building: Process

2. Identify stakeholders’
win conditions

3. Reconcile win conditions.
Establish alternatives.

4. Evaluate & resolve risks.

5. Define solution

6. Validate

7. Review & commit

1. Identify stakeholders

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Consensus building: WinWin tool

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 28

Consensus building: Experiences

Context
♦ Initial case studies used project courses with real customers
♦ Used in industry

Results
+ Risk management focus
+ Trust building between developers and clients
+ Discipline
− Inadequate tool support

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

Consistency with goals

Problem
♦ Once multiple criteria have been acknowledged

! Find solutions that satisfy all of them
! Document the trade-offs that were made

Example
♦ Authentication should be secure, flexible for the user, and low

cost.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 30

Consistency with goals: NFR Framework

♦ NFR goal refinement
! NFRs are represented as goals in a graph
! Leaf nodes of the graph are operational requirements
! Relationships represent “help” “hurt” relationships
! One graph can represent many alternatives

♦ NFR evaluation
! Make and break values are propagated through the graph

automatically
! Developer can evaluate different alternatives and compare them

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 31

Consistency with goals: Model

Flexibility Low cost Security

Account+PIN Finger Print Reader SmartCard+PIN

Authentication Confidentiality Integrity

_

++ _

X

OR

AND

➼

➼

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 32

Consistency with goals: Process

Elicit
high-level goals

Refine into
detailed goals

Identify goal
dependencies

Identify
operational goals

Evaluate
alternatives

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 33

Consistency with goals: Experiences

+ Case studies on existing systems lead to clearer trade-offs
+ Research into integrating NFR framework and design patterns

! Match NFRs to design pattern “Forces”
! Link NFRs, design patterns, and functional requirements

− Tool support important

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 34

Rapid knowledge construction

Problem
♦ When a company is large enough, it doesn’t know what it does.

! Knowledge rarely crosses organizational boundaries
! Knowledge rarely crosses physical boundaries

Example
♦ Identify resources at risk for Y2K and prioritize responses.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 35

Rapid knowledge construction: Compendium

♦ Meeting facilitation
! Stakeholders from different business units
! External facilitator

♦ Real-time construction of knowledge maps
! The focus of the meeting is a concept map under construction
! Map includes the issue model nodes and custom nodes

(e.g., process, resource, etc.)

♦ Knowledge structuring for long term use
! Concept map exported as document outline, process model, memos,

etc.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 36

Rapid knowledge construction: Model

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 37

Rapid knowledge construction: Process example

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 38

Rapid knowledge Construction: Experiences

Context
♦ Several industrial case studies, including

Y2K contingency planning at Bell Atlantic

Results
♦ Increased meeting efficiency (templates are reused)
♦ Knowledge reused for other tasks

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 39

Summary

♦ Rationale can be used in project management
! To build consensus (WinWin)
! To ensure quality (NFR Framework)
! To elicit knowledge (Compendium)

♦ Other applications include
! Risk management
! Change management
! Process improvement

♦ Open issues
! Tool support
! User acceptance

