
Page 1

U
si

ng
 U

M
L,

 P
at

te
rn

s,
an

d
Ja

va
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 13
Configuration
Management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 2

Outline of the Lecture
♦ Purpose of Software Configuration Management (SCM)

! Motivation: Why software configuration management?
! Definition: What is software configuration management?
! Activities and roles in software configuration management

♦ Some Terminology
! Configuration Item, Baseline, SCM Directory, Version, Revision

Release.
♦ Software Configuration Management Activities

! Promotion Management, Release Management, Change
Management

♦ Outline of a Software Configuration Management Plans
! Standards (Example: IEEE 828-1990)
! Basic elements of IEEE 828-1990

♦ Configuration Management Tools

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 3

Why Software Configuration Management ?

♦ The problem:
! Multiple people have to work on software that is changing
! More than one version of the software has to be supported:

" Released systems
" Custom configured systems (different functionality)
" System(s) under development

! Software must run on different machines and operating systems

#Need for coordination
♦ Software Configuration Management

! manages evolving software systems
! controls the costs involved in making changes to a system

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 4

What is Software Configuration Management?

♦ Definition:
! A set of management disciplines within the software engineering

process to develop a baseline.

♦ Description:
! Software Configuration Management encompasses the disciplines

and techniques of initiating, evaluating and controlling change to
software products during and after the software engineering
process.

♦ Standards (approved by ANSI)
! IEEE 828: Software Configuration Management Plans
! IEEE 1042: Guide to Software Configuration Management

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 5

Software Configuration Management is a Project
Function

♦ SCM is a Project Function (as defined in the SPMP) with the
goal to make technical and managerial activities more effective.

♦ Software Configuration Management can be administered in
several ways:
! A single software configuration management team for the whole

organization
! A separate configuration management team for each project
! Software Configuration Management distributed among the project

members
! Mixture of all of the above

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 6

Configuration Management Activities

♦ Software Configuration Management Activities:
! Configuration item identification
! Promotion management
! Release management
! Branch management
! Variant management
! Change management

♦ No fixed rules:
! Activities are usually performed in different ways (formally,

informally) depending on the project type and life-cycle phase
(research, development, maintenance).

Page 2

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 7

Configuration Management Activities (continued)

♦ Configuration item identification
! modeling of the system as a set of evolving components

♦ Promotion management
! is the creation of versions for other developers

♦ Release management
! is the creation of versions for the clients and users

♦ Change management
! is the handling, approval and tracking of change requests

♦ Branch management
! is the management of concurrent development

♦ Variant management
! is the management of versions intended to coexist

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 8

Configuration Management Roles

♦ Configuration Manager
! Responsible for identifying configuration items. The configuration

manager can also be responsible for defining the procedures for
creating promotions and releases

♦ Change control board member
! Responsible for approving or rejecting change requests

♦ Developer
! Creates promotions triggered by change requests or the normal

activities of development. The developer checks in changes and
resolves conflicts

♦ Auditor
! Responsible for the selection and evaluation of promotions for

release and for ensuring the consistency and completeness of this
release

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 9

Terminology

♦ We will define the following terms
! Configuration Item
! Baseline
! SCM Directories
! Version
! Revision
! Release

#The definition of the terms follows the IEEE standard.
#Different configuration management systems may use different

terms.
#Example: CVS configuration management system used in our

projects uses terms differeing from the IEEE standard.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Terminology: Configuration Item

“An aggregation of hardware, software, or both, that is
designated for configuration management and treated as a
single entity in the configuration management process.”

$ Software configuration items are not only program code segments but all
type of documents according to development, e.g
#all type of code files
#drivers for tests
#analysis or design documents
#user or developer manuals
#system configurations (e.g. version of compiler used)

$ In some systems, not only software but also hardware configuration items
(CPUs, bus speed frequencies) exist!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

Finding Configuration Items

♦ Large projects typically produce thousands of entities (files,
documents, data ...) which must be uniquely identified.

♦ Any entity managed in the software engineering process can
potentially be brought under configuration management control

♦ But not every entity needs to be under configuration
management control all the time.

♦ Two Issues:
! What: Selection of Configuration Items

" What should be under configuration control?
! When: When do you start to place entities under configuration

control?
♦ Conflict for the Project Manager:

! Starting with CIs too early introduces too much bureaucracy
! Starting with CIs too late introduces chaos

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Finding Configuration Items (continued)

♦ Some items must be maintained for the lifetime of the software.
This includes also the phase, when the software is no longer
developed but still in use; perhaps by industrial customers who
are expecting proper support for lots of years.

♦ An entity naming scheme should be defined
so that related documents have related names.

♦ Selecting the right configuration items is a skill that takes
practice
! Very similar to object modeling
! Use techniques similar to object modeling for finding CIs!

" Find the CIs
" Find relationships between CIs

Page 3

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Which of these Entities should be Configuration
Items?

♦ Problem Statement
♦ Software Project Management

Plan (SPMP)
♦ Requirements Analysis Document

(RAD)
♦ System Design Document (SDD)
♦ Project Agreement
♦ Object Design Document (ODD)
♦ Dynamic Model
♦ Object model
♦ Functional Model
♦ Unit tests
♦ Integration test strategy

♦ Source code
♦ API Specification
♦ Input data and data bases
♦ Test plan
♦ Test data
♦ Support software (part of the

product)
♦ Support software (not part of the

product)
♦ User manual
♦ Administrator manual

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

Possible Selection of Configuration Items

♦ Problem Statement
♦ Software Project Management

Plan (SPMP)
% Requirements Analysis Document

(RAD)
% System Design Document (SDD)
♦ Project Agreement
% Object Design Document (ODD)
♦ Dynamic Model
♦ Object model
♦ Functional Model
% Unit tests
♦ Integration test strategy

% Source code
♦ API Specification
% Input data and data bases
♦ Test plan
% Test data
% Support software (part of the

product)
♦ Support software (not part of the

product)
♦ User manual
♦ Administrator manual

Once the Configuration Items are selected, they are usually organized in a tree

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

Terminology: Version

♦ The initial release or re-release of a configuration item
associated with a complete compilation or recompilation of the
item. Different versions have different functionality.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Terminology: Baseline

“A specification or product that has been formally reviewed
and agreed to by responsible management, that thereafter
serves as the basis for further development, and can be
changed only through formal change control procedures.”

Examples:
Baseline A: All the API have completely been defined; the bodies of the

methods are empty.
Baseline B: All data access methods are implemented and tested.
Baseline C: The GUI is implemented.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17

More on Baselines

♦ As systems are developed, a series of baselines is developed,
usually after a review (analysis review, design review, code
review, system testing, client acceptance, ...)
! Developmental baseline (RAD, SDD, Integration Test, ...)

" Goal: Coordinate engineering activities.
! Functional baseline (first prototype, alpha release, beta release)

" Goal: Get first customer experiences with functional system.
! Product baseline (product)

" Goal: Coordinate sales and customer support.

♦ Many naming scheme for baselines exist (1.0, 6.01a, ...)
♦ A 3 digit scheme is quite common:

Release
(Customer)

Version
(Developer)

Revision
(Developer)

7.5.5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Change management

♦ Change management is the handling of change requests
! A change request leads to the creation of a new release

♦ General change process
! The change is requested (this can be done by anyone including users

and developers)
! The change request is assessed against project goals
! Following the assessment, the change is accepted or rejected
! If it is accepted, the change is assigned to a developer and

implemented
! The implemented change is audited.

♦ The complexity of the change management process varies with the project.
Small projects can perform change requests informally and fast while
complex projects require detailed change request forms and the official
approval by one more managers.

Page 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

♦ Two types of controlling change:
! Promotion: The internal development state of a software is changed.
! Release: A changed software system is made visible outside the development

organization.

♦ Approaches for controlling change (Change Policy)
! Informal (good for research type environments and promotions)
! Formal approach (good for externally developed CIs and for releases)

Controlling Changes

Promotion Release
Software Repository

User
Programmer

Promote
Policy

Release
Policy

Master
Directory

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Terminology: SCM Directories

♦ Programmer’s Directory (IEEE: Dynamic Library)
! Library for holding newly created or modified software entities.
! The programmer’s workspace is controlled by the programmer

only.

♦ Master Directory (IEEE: Controlled Library)
! Manages the current baseline(s) and for controlling changes made

to them.
! Entry is controlled, usually after verification.
! Changes must be authorized.

♦ Software Repository (IEEE: Static Library)
! Archive for the various baselines released for general use.
! Copies of these baselines may be made available to requesting

organizations.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Foo’95 Foo’98

Standard SCM Directories

♦ Programmer’s Directory
! (IEEE Std: “Dynamic Library”)
! Completely under control of one

programmer.

♦ Master Directory
! (IEEE Std: “Controlled Library”)
! Central directory of all promotions.

♦ Software Repository
! (IEEE Std: “Static Library”)
! Externally released baselines.

Central source
code archive

Release

Promotion

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Change Policies

♦ Whenever a promotion or a release is performed, one or more
policies apply. The purpose of change policies is to guarantee
that each version, revision or release (see next slide) conforms
to commonly accepted criteria.

♦ Examples for change policies:
“No developer is allowed to promote source code which cannot be
compiled without errors and warnings.”

“No baseline can be released without having been beta-tested by at
least 500 external persons.”

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Terminology: Version vs. Revision vs. Release

♦ Version:
! An initial release or re-release of a configuration item associated

with a complete compilation or recompilation of the item. Different
versions have different functionality.

♦ Revision:
! Change to a version that corrects only errors in the design/code, but

does not affect the documented functionality.

♦ Release:
! The formal distribution of an approved version.

Question: Is Windows98 a new
version or a new revision compared

to Windows95 ?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 24

Software Configuration Management Planning

♦ Software configuration management planning starts during the
early phases of a project.

♦ The outcome of the SCM planning phase is the
Software Configuration Management Plan (SCMP)
which might be extended or revised during the rest of the
project.

♦ The SCMP can either follow a public standard like the IEEE
828, or an internal (e.g. company specific) standard.

Page 5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 25

The Software Configuration Management Plan

♦ Defines the types of documents to be managed and a document
naming scheme.

♦ Defines who takes responsibility for the CM procedures and
creation of baselines.

♦ Defines policies for change control and version management.
♦ Describes the tools which should be used to assist the CM

process and any limitations on their use.
♦ Defines the configuration management database used to record

configuration information.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Tools for Software Configuration Management
♦ Software configuration management is normally supported by

tools with different functionality.
♦ Examples:

! RCS
" very old but still in use; only version control system

! CVS (Concurrent Version Control)
" based on RCS, allows concurrent working without locking
" http://www.cvshome.org/
" CVSWeb: Web Frontend to CVS

! Perforce
" Repository server; keeps track of developer’s activities
" http://www.perforce.com

! ClearCase
" Multiple servers, process modeling, policy check mechanisms
" http://www.rational.com/products/clearcase/

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 27

Summary
♦ Software Configuration Management: Important part of project

management to manage evolving software systems and
coordinate changes to them.

♦ Software Configuration Management consists of several
activities:
! Promotion and Release management (Covered today)
! Branch, Variant and Change Management ([Bruegge-Dutoit])

♦ Public standard for SCM plans: IEEE 828.
♦ The standard can be tailored to a particular project:

! Large projects need detailed plans to be successful
! Small projects should not be burdened with the bureaucracy of

detailed SCM plans
♦ SCM should be supported by tools. These range from

! Simple version storage tools
! Sophisticated systems with automated procedures for policy checks

and support for the creation of SCM documents.

